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ABSTRACT

An 18-day lunar surface mission was simulated under laboratory conditions
with two NASA engineers as test subjects. The purpose of the simulation
was to validate a minimum-volume cabin design for a lunar roving vehicle.
The cabin contained a free volume of 3. 26 cubic meters (115. 3 cubic feet) in
the main living space and 1. 36 cubic meters (48 cubic feet) in the airlock.
The cabin had a maximum floor-to-ceiling height of 166. 0 centimeters (65. 4
inches). The cabin was evaluated with subjects performing representative
scientific and mission-oriented tasks in accordance with crew mission time-
lines developed in connection with this study. A 16-hour on and 8-hour off
work-rest schedule was used. Subjects were given a 3000-calorie per day

diet provided in four meals per day.

The subjects were evaluated by performance and physiological measures.
Driving, monitoring, navigation, sample measurement and audio balancing
tasks were performed. Selected geophysical tasks requiring simple but
realistic measures contributed to simulation realism. Subjects' maximum
Oxygen capacity and the associated heart and respiratory rates were obtained
before and immediately after the simulation by measuring oxygen consumption
during graded treadmill runs. By this means, each subject was physiologi-
cally calibrated and pre- and post-simulation physical fitness evaluated.
Throughout the simulation heart and respiratory rates were also taken con-

tinuously via a biotelemetry system.

Water balance and urine analyses were performed. Selected simulated emer-
gencies were performed to evaluate the interaction of the subjects in pres-
surized state-of-the-art Apollo suits with the vehicle interior volumes and
workspace layout. Subjects performed daily extravehicular activities while
wearing inflated pressure suits. Representative physiological stresses were
obtained during extravehicular activities by performing walks up to 4. 15 kilo-

meters per hour (2. 6 miles per hour) on a treadmill while wearing inflated
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pressure suits. All simulated tasks were performed at 1 atmosphere pres-
sure. The performance data was analyzed by simple statistics, daily means
and standard deviations being calculated by computer for each principal task.
Graphical analysis was used to evaluate trends or irregularities in the task
data.

No adverse trends or marked irregularities were noted in the performance
data of either subject throughout the 18-day simulation. Both subjects main-
tained satisfactory performance levels and physical condition throughout the
simulation with no adverse effects attributable to the extended period of living

and working in the vehicle simulator being observed.
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SECTION 1
INTRODUCTION

In earlier studies (Ref. 1) a series of simulations were conducted using a
variable-volume simulator to establish preliminary cabin free-volume design
criteria for lunar surface vehicles. Using performance and physiological
measures (Refs. 1, 2, 3 and 4) in evaluating vehicle interior volumes during
a series of 3-hour, 10-hour and 72-hour simulations, a minimum free
volume was determined which did not seriously compromise either the
subjects' performance of simulated mission tasks or their physical well
being. The data, obtained on two-man crews performing representative
lunar mission segments, provided critical design data for over-all size,
weight and trans-lunar stowage space required for a lunar surface vehicle.
These parameters in turn affect the amount of space available on such a vehi-

cle for scientific equipment and lunar surface sample collection.

Though many confinement studies in space cabin simulators have been con-
ducted (Refs. 19, 27, 28 and 29), only one other study is known to have ex-
plicitly examined the problems of minimum cabin volume for a two-man crew
(Ref. 19). For the present study, a simulator (designated the LUNEX II) was

constructed on the basis of the results of the previous short-term simulations.

The LUNEX II was designed to simulate a lunar mobile laboratory, one of
several concepts NASA is evaluating for manned lunar exploration. This

lunar vehicle is intended to house a two-man crew in a shirt-sleeve environ-
ment for a nominal 14-day lunar mission with a maximum stay-time of 21
days. During this mission the crew would conduct a scientific lunar explora-
tion requiring extra-vehicular excursions in pressurized suits on the lunar
surface. Crew members would also perform on-board scientific system moni-
toring and preliminary analyses of lunar surface samples. In addition, vehi-

cle driving, navigation, system monitoring and routine housekeeping tasks
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would need to be performed. The stationary LUNEX II simulator housed two
test subjects for a full-term 14- to 21-day lunar surface mission requiring
the performance of tasks related to the lunar mobile laboratory concept. No
attempt was made to provide a completely closed ecological system or to sim-

ulate unusual environmental conditions.

The test subjects were highly motivated NASA scientist/engineers. The
LUNEX II simulator cabin interior incorporated the previously determined
minimal cabin volumes into an integrated workspace design as an initial

approach to establishing realistic design criteria.
The principal purposes of this simulation were:

) To validate the results of previous short-term studies, using a
vehicle of minimal volume, by evaluating crew performance
during a two- to three-week simulated lunar surface mission

by means of behavioral and physiological tests.

e To develop and validate manned system design criteria for

lunar surface cabin interiors.

Shirt-sleeve, ventilated and pressurized suit conditions were evaluated in the

context of simulated normal and emergency activities.
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SECTION 2
STUDY METHODS AND RATIONALE

2,1 DESCRIPTION OF THE LUNEX II SIMULATOR

The LUNEX II simulator is divided into two compartments -- a driving and work-
space/living area having 3, 26 cubic meters (115, 3 cubic feet) of free workspace
and an airlock designed such that, under normal mission conditions, its free
workspace volume is 1, 36 cubic meters (48, 0 cubic feet), The airlock provides
1,86 cubic meters (65,9 cubic feet) during emergency conditions requiring pres-
sure suit use,.(The airlock was designed such that under emergency conditions
requiring the use of inflated pressure suits the suit and backpack storage space
in the airlock would be available for use). The driving and workspace/living
area provides 1. 63 cubic meters (57. 6 cubic feet) per man. The two cabin
compartments have a total free volume, under normal conditions, of 4.61

cubic meters (163. 3 cubic feet) with an additional 3. 96 cubic meters (140. 3

cubic feet) of equipment/storage space. These volumes are summarized

in Table 1. The crew/cabin space is designed to provide the crew with maximum
free work space in the seated position. An unrestricted standing position was not
provided since the ceiling height was only 166 centimeters (65. 4 inches) (90 per-
cent of the standing height of a 95th percentile man-Ref. 5). The LUNEX II

is basically a cylindrical plywood/masonite structure having an inside diameter

of 2.1 meters (7 feet) and a floor area of 2. 47 square meters (26. 6 square feet)

(sec Figures 1, 2, 3 and 4).

Since the simulation was concerned only with cabin interior space habitated by

the test subjects and the space necessary for storing scientific and life support
equipment used daily, the unused spaces below the floor and above the ceiling
were omitted. Assuming a completely cylindrical vehicle, the entire body would
have a volume of 11.08 cubic meters (392. 9 cubic feet), with 2.51 cubic meters
(89. 3 cubic feet) independent of the crew occupied area allotted for vehicle system

equipment and accessory gear not directly associated with crew/task activities

(see Figure 5).
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A driving station (Figure 6) occupied the front of the vehicle and was used for
simulated driving (Figure 7) and monitoring tasks ( Figure 8). Part of this area
was used during sleep periods. Two eccentrically pivoted chairs were located

in the driving station, either of them capable of being turned 180 degrees to form
a seat usable in the central workspace station (Figures 6, 7, 8 and 11), Stowage
space was provided under and to the outside of each chair. Sliding writing boards
and storable arm rests were available to each subject when facing forward in the
driving seats,

The workspace/living area served as the primary area for performing scientific
tasks, preparing and consuming meals, and sleeping, Workspace was available
on each side of the center aisle (Figures 9 and 10), A stowable work surface
extended across the center aisle accessible to both subjects (Figure 11), A
small traveling stool could be pulled from its wall stowage space for sitting in the
center aisle area (Figure 12), The maximum standing height in the center aisle
was 166 centimeters (65,4 inches)., This area served as the sleeping space when
a recessed upper bunk was pulled out, One subject slept on the floor and the

other on the bunk (Figure 13)., Stowable mattresses were provided,

The airlock provided space for pressure suit donning and doffing (Figure 14 and
15), In addition, personal waste elimination was effected in the airlock. Urine
and fecal wastes were passed to the outside experimenters for analysis via a
sliding compartment (Figure 16), A double-acting door (55.8 cm x 127 cm),
capable of opening either into the airlock orthe cabin, separated the airlock
from the living/workspace area, The outer airlock door (76,2 cm x 127 cm)
opened to the exterior of the vehicle. The airlock hatches were opened and
secured by 12-inch handwheels with a 55-degree travel to the locked position
and a 120-degree travel to the unlocked position (i.e. 65 degrees of overthrow),
A constant 12-inch-pound torque was required to operate the outer airlock hatch

and 6 inch-pounds were required to operate the inner hatch,
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2,1.1 Comestibles and Crew Hygiene Facilities

The subjects' food consisted of dehydrated food in individually packaged meals
prepared by the Pillsbury Company. The diet was prepared in advance for five-
day cycles and allowed each man approximately 2, 800 calories per day consumed
during four meal periods each day (Figure 17), Vitamin pills were provided daily
as a diet supplement, Enough food for a 21-day simulation was stored in the
LUNEX II prior to the start of the simulation. Hot meals were prepared by
adding water pre-heated to 140°F to the plastic meal container, Both hot and
cold water were available in unrestricted amount, The subjects, however, were
required to keep an accurate log of all water consumed both in their meals and
as a supplement to the diet. A modified graduated burette capable of providing
measured amounts of both hot and cold water was provided for this purpose
(Figure 18).

The procedure used in preparing a meal required that the subject tear the top of
the plastic sack containing the desired meal item, add the proper amount of hot
or cold water, roll down the open end of the plastic sack and seal it with a clip,
mix the food and water and ingest it by drinking (or squeezing) the food directly

from the plastic sack container,

Waste products were removed using the sliding toilet compartment in the airlock.
The subjects urinated into labelled containers which were refrigerated until

analyzed., Feces were removed in waterproof bags and frozen for later analysis,

The LUNEX II was ventilated with purified cool air furnished at a flow rate
which provided a complete air exchange in 25 to 90 seconds., Louvered intake
vents permitted the subjects to control the inlet flow rate and thus permitted
them limited control over cabin temperature. Several exhaust vents permitted
a rapid exchange of habitable air without danger of contaminant buildup or
obnoxious odors, Cabin temperature was measured continuously. The subjects
were permitted personal hygiene items with the exception that shaving equipment

was not provided, An electric toothbrush was provided for oral hygiene.
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Commercial premoistened disposable benzyl chloride/alcohol wash towels

were used for cleaning, Small wash pans were provided for occasional sponge

baths, Clean sets of clothing were stored in the vehicle, The exchange of used

items for clean clothes was effected through a pass box in the side of the vehicle,

2,1,2 INSTRUMENTATION

Two push-to-talk communications stations were located in the LUNEX II for
verbal contact with the test monitors, During inflated pressure suit activities,
a separate communication system between the subject in the suit and the test
monitors was provided. Vehicle lighting was provided by four spotlights with
adjustable intensities in the driving/monitoring area, four guarded fluorescent
lights in the workspace/living area, and two guarded fluorescent lights in the
airlock, The illumination provided in each of these areas is shown in Table 2.
Table 3 lists the electrical controls and indicators located in the simulator.

A television camera with a wide-angle lens directed at the workspace [living
area and driving area permitted visual monitoring of the subjects. A lens cap

was provided to the subjects to permit privacy when desired,

Both subjects wore two FM transmitters with pickup electrodes for continuous
telemetry of heart and respiratory rate throughout each day and removed them
before going to sleep., Each transmitter weighed approximately 18 grams with

case dimensions of 32 x 25 x 16 millimeters, The E & M Instrument Company

transmitters permitted short-range transmission of heart and respiratory rate

with a maximum range under laboratory conditions of up to 100 feet, Light-
weight silver-disc self-adhering electrodes were used with E & M electrode

paste,

2.1,3 Pressure Suits and Portable Life Support System (PLSS)

Each subject had two current, functional pressure suits provided by the NASA

Crew Systems Division, Manned Spacecraft Center, Houston, Texas., Throughout
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most of the simulation the subjects used Apollo state-of-the-art suits. HECMAR
suits were used as backup equipment. The suits required on-the-spot repairs
and suit replacements in several instances, Four Portable Life Support Systems
(PLSS) were simulated by wooden mockups of representative weight and volume,
Suit pressurization was regulated by the subjects, a pressure of 3.5 psi being
maintained during inflated tasks by the operation of a small regulator attached

to the backpack and accessible to the subjects during pressure suit activities.

All outside tasks were performed in the inflated pressure suits, A flow rate of
approximately 0, 34 cubic meters (12 cubic feet) per minute was maintained using
banks of compressed air tanks and appropriate regulators, The inlet suit air
was cooled by passage through copper coils immersed in a cold liquid solution.
Initially this solution consisted of alcohol and dry ice. This, however, cooled
the air excessively resulting in inlet air temperatures lower than 0, 5°C (30°F),
capable of causing localized skin freezing without subject awareness. This
problem was solved by using an ice water mixture which provided a constant

suit inlet temperature of 12, 2°C (54°F),

SUPPORT EQUIPMENT EXTERNAL TO THE SIMULATOR

The equipment used to generate the tasks was set up outside the simulator.
This equipment is described in the '"Description of Tasks and Physiological
Measures' subsection (2.4)., The experimenters'task equipment and recording
stations are shown in Figures 1 and 19, Figure 20 shows the typical visual
access gained through use of the TV monitor, A small treadmill with remote
speed and grade controls was outside the vehicle for use by the subjects when
performing simulated outside tasks (Figure 21, The treadmill could provide

continuous speeds from 1,6 - 16 Kmph (1 to 10 mph) and grades from 2 to 40 percent.

The interrelationship of these various components with those inside the simul-

ator are indicated in Figure 22,
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2.3

2,4

SUBJECTS

Two experienced engineer-scientists from the NASA Marshall Space Flight
Center served as subjects, They were Mr. Michael J, Vaccaro, designated

as Commander during the simulation and hereafter referred to as Operator 1

and Mr, Haydon Y, Grubbs, Co-Commander, hereafter referred to as Operator 2,
Both men are vitally active in studies associated with lunar surface missions

and were highly motivated test subjects, Operator 2 was a senior pilot with
approximately 1000 hours of jet flying time, Both men were experienced in
simulation studies and in the background and purpose of this particular lunar
surface vehicle simulation. Each subject has had extensive experience in the
use of various NASA pressure suits and their support equipment, The subjects'

physical dimensions are given in Table 4,

DESCRIPTION OF TASKS AND PHYSIOLOGICAL MEASURES

2.4,1 Task Descriptions

The following tasks were performed:

2,4.1,1 Task Involving Statistical Design Requiring Controlled Presentations --

These tasks were analyzed by simple statistics and graphical trend analysis.
The data were stored on punched cards, Means, standard deviations and tables
were generated by computer on a daily basis for both subjects combined and for

the individual subjects. (Appendix III describes the analysis procedure,)

2,4.,1.1,1 Driving Tasks -- The driving task was a pursuit tracking

problem displayed on a dual-beam oscilloscope, The display presented
two spaced vertical lines, representing a '"road path}' which oscillated
horizontally as they were driven by three sine-wave function generators

in parallel. (A schematic of the driving task is shown in Figure 23).
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The subject controlled a small dot on the scope by means of side-to-side
motions of a modified developmental Apollo side stick control having 2
degrees of freedom in a single axis, The subject's task was to keep the
dot centered on the simulated "path', Subject errors were recorded by
an analog computer as the absolute integral error resulting when the dot
was outside the roadway., Total integral error was also displayed on a
Sanborn recorder, Based on pre-simulation evaluations, three error
categories were derived relating the integral error to location on the navi-
gation map (Table 5), Subject time-off~-course was recorded directly by
means of a clock timer, Each driving task consisted of eight 5-minute
presentations, Two frequencies were displayed to the subject (Figures
24 and 25), the order of their presentation during eight driving subtasks

being systematically varied,

2.4.1.1,2 Monitoring Tasks -- While one operator was driving, the

other operator performed monitoring tasks. These tasks consisted of:

(a) monitoring the driver's time '"off course' by responding to a push
button which was lighted whenever the driver left the ''road way" and

(b) an associated change-no-change pattern recognition problem. The
latter problem presented various light patterns on a nine-light panel, the
operator being required to scan the pattern for a '"change'" or '""no-change",
and then make the appropriate push-button response, This task repre-

sented monitoring of vehicle subsystems.,

Two monitoring tasks were time-shared, Off-course time monitoring
error, At, was recorded as the difference beiween the time the monitor's
switch was depressed, tm’ and the time the driver was off course, to’ per

five minute driving tasks

At = tm-to

This particular recorded parameter warrants a brief description of the

procedure used in handling the data for this task. At has a finite lower
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limit due to the monitor's reaction time. Thust  is always greater than

to provided the monitor does not release the switch while the driver is

still off-course; to has a maximum upper limit of 300 seconds for the worst
possible driving condition (i, e., if the driver should be off course the full
5-minute driving period). To account for variations in driving proficiences,

the monitoring error was considered as a percentage:
. _ Ot
Percentage of off-course time = TlOO.
o
Considered in this manner; it is obvious that a 100 percent monitoring error
means that the monitor switch was depressed twice as long as the time the

driver was off course, that is if:

DM - m - o

1, thent_ = 2t
m o

Since tc‘) has a possible lower limit of zero (the driver never being off course),

the ratio %1 approaches infinity for the perfect driving condition for any
o

finite monitoring time, tm.

These conditions were observed in the data as is noted in the results

subsection for this task.

2.4.1,1,3 Navigation Task -- The subjects were provided with maps of the

intended lunar traverse for the 14-to 21-day mission (Figure 26), As the
mission progressed, the subjects' position was determined by the experi-
menters as a function of driving task performance, The experimenters
kept track of the vehicle on a large master map (Figure 59), The position
of the vehicle in relation to various map features was determined by the
experimenters in terms of lines-of-bearing, Simple triangular objects
representing the lunar terrain features were mounted at the appropriate
angles on the rim of a large disc mounted on the top of the LUNEX II

simulator (Figure 27), The subjects then performed a navigation task to
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determine their position., The navigation task was a time-shared task.
The subjects initiated the task by starting a timer and indicated task
completion by switching the timer off, A war surplus panoramic peri-
scope had to be mounted through the ceiling in the center of the disc to
perform the sightings and stowed at the completion of each sighting task.
The subjects' task was to set up the periscope and determine the angles

to the appropriate terrain features. The accuracy of the subjects' angular
measurements were evaluated. Based on these angular measurements,
the subjects "'fixed" their location and transmitted their position in map
reference coordinates to the experimenters, The "charting error' was

the difference between their determined location and the actual location,

2.4.1,1,4 Audio Balancing -- To observe the subjects' response to stimuli
other than visual andtactile, the subjects were required to balance a Wheat-

stone bridge to four-decimal-place accuracy by audio means, This task
simulates a physical chemical procedure commonly used to determine the
ionic resistivity of unknown solutions (in this case, an imaginary lunar
dust sample in solution) by comparing the sample resistivity with known

standards,

A stereo headset connected to two variable-audio-frequency generators
(one earphone to each generator) was used by the subject to compare and
match two audio stimuli. (The functional schematic for this task is shown
in Figure 31), Digital counters were used for accurate frequency record-

ing. The frequencies presented to the subject were selected from a range
of 800t

Each frequency was presented at an intensity of 70 db once per experiment

o 1000 cps, divided into 10 approximately equivalent intervals,

in a randomized order,

2,4,1.1.5 Sample Measurement -- Precise scientific work can be expected

of astronauts on a lunar mission, To simulate such precise work, the

subjects were required to measure the outside diameter of optically cali-
brated aluminum discs, using a traveling microscope. The accuracy and
time of the measurement was recorded. Accuracy to four decimal places

was required of the subjects,
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2.4,1,2 Tasks Providing Mission Realism and Basic Behavioral Measurements --

2.4.1.2,1 Geophysical Tasks -- The University of Minnesota Geophysics

Department provided a variety of tasks designed to represent the type of
geological activity expected on early lunar missions, These tasks were

not intended to imitate actual lunar mission tasks but to represent simple

yet realistic geological activities, The tasks required the collection of as
many different rock and mineral categories as possible, retaining only one
sample of each category. The tasks further required that the traverse of the
lunar mission be accurately mapped with respect to prominent known terrain
features and that new terrain features be mapped as they are observed. The
careful collection of rock and mineral samples such that the scientific value
of the return payload is maximized while minimizing its weight involves both
macroscopic and microscopic analysis, The macroscopic analysis began with
the subject in the inflated suit making judicious rock sample collections during
his extra-vehicular activity., Nearly 100 rock samples, representative of the
types geologists expect to find on the moon, were located in.the area outside
the LUNEX II simulator (Figure 29). The subjects' task was to visually sort
the samples and select 20 rocks appearing to represent discrete categories.
These 20 samples were returned to the LUNEX II where analysis of the
samples was performed. In each of the 20 samples, there was no more than
eight categories. The subject's task was to determine which eight should be
returned to earth (Figures 30 and 33), Microscopic analysis of mineral
samples required the analysis of mineral grains by use of a binocular micro-
scope and a polarizing microscope (Figures 31 and 32), Mineral crystals
requiring sorting by category and by properties were provided. These crystals
had to be identified by sampling and microscopic counting. The minerals
mounted on petrographic slides required analysis by the determination of
anisotropic, isotropic and opaque light transferring properties using the
polarizing microscope. The subject's task was to sort crystals and to
distinguish distinct mineral samples mounted on petrographic slides, These

tasks are shown in Figures 34 and 35 respectively.
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In association with the navigation tasks, specific terrain features were
revealed at irregular times and had to be located on the subjects' map.
For example, a particular mountain was shown during one navigation
period, The angle to the mountain was noted and a ray drawn from the
LUNEX II location through the mountain location. After several driving
periods, the same mountain was again shown and a ray drawn, The inter-
section of the rays located the new terrain feature on the subjects' map.
In this way, single-dimension plotting of simulated lunar terrain features

was possible,

2,4,1,2,2. Skill Retention Task -- This task was associated with the pattern

recognition monitoring task previously described, During the presimulation

training period, specific patterns were presented on the nine-light panel,
The subjects were required to respond in a different manner to each pattern,
These selected patterns were presented only sporadically throughout the
simulation, The subjects were scored according to their retention of the

particular response sequence,

The skill retention task was designed with three primary goals, These
were to measure the degree to which pattern recognition deteriorated
during the simulation, to detect changes in visual-motor skill retention
as a function of practice, and to add interest and variety to the monitoring
task,

This task used the same nine lights and three buttons as the change-no-
change pattern recognition task and was interspersed with it during the
monitoring periods each day, During the practice sessions, the operators
learned the correct response to each of seven pairs of light patterns, Each
pattern consisted of five lights, and the same pattern in two rotations was
used in each pair (see Figure 36)., The driving and monitoring periods
were divided into 5-minute segments, On the average, one pattern would
appear on the nine-light matrix during each segment, At this point, the

monitor had to realize that the pattern recognition task was no longer running.
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This was possible because five lights, instead of the usual four, three,
two, or one were lighted, He then had to push the correct combination

of buttons which would turn the pattern off and cause the regular task to
resume, Reaction time, total time to achieve a correct response, and
number of buttons pushed were recorded automatically during this period
on a four-channel Sanborn recorder, Some patterns were presented more
often than others so that practice effects could be measured. Figure 37
shows the frequency of presentation of each pattern for both operators.
The plan was to have three of the pattern-pairs presented every day and to
space the presentations of the other four to give data points for many prac-
tice conditions., Because monitoring periods were often irregular, the
original schedule of presentations was not closely followed, This, how-

ever, did not seriously affect the analysis of the data.

2.4.1.2.3 Gimbal Position Indicator Task -- This task required precise

settings of yaw, pitch and roll gimbal positions on a flightworthy piece of

Apollo hardware. The task was conceived in cooperation with the Honeywell

Apollo group which has the responsibility of designing and furnishing the
Stabilization and Control System for the Apollo Command Module. The task
required precise inputs to be set into the Gimbal Position Indicator in the
shirt-sleeve, ventilated and inflated suit conditions. The task simulated
putting information into an on-board lunar surface vehicle computer. It
also provided meaningful data to the Apollo Group regarding the accuracy
of settings in various suited conditions, The principal comparison desired
was between setting accuracy in the shirt-sleeve condition and in the venti-
lated suit condition. For these conditions, each subject performed in both

the shirt-sleeve and ventilated suit condition, on the same day.

2.4.1,2,6 Emergency Tasks -- Emergency tasks requiring the use of the

pressurized suit were introduced sporadically into the simulation mission
activities, These tasks involved: (a) emergency rescue of an "injured"
operator outside the vehicle, and (b) emergency operation of cabin systems
during simulated cabin or airlock pre ssure failures. In addition, the effect

of a temporary disability of one operator was examined,

12504-ITR2




r Y W T I W O B O G G P W W W e W e e

- 15 -

2.4.1,2.7 Subjective Data -- The subjects were required to make

Ssubjective evaluations of the simulation after the completion of 3 days,

7 days and 14 days in the simulation, Modified Cooper Scale evaluation
forms were used to obtain numerical ratings as well as written comments
(Figure 38), Similar forms were also completed for each emergency task,

These forms were completed independently by each subject.

In addition to the evaluation forms, each subject kept a detailed daily log
which was available to theexperimenters upon completion of the simulation,

2.4,2 Physiological Measures

In addition to evaluating crew performance by integrated behavioral and psycho-
physiological tasks, selected physiological factors were evaluated, The maximum
oxygen consumption measurements (obtained by requiring the subjects to work on
a treadmill during indirect calorimetry) were performed by the University of
Minnesota Laboratory of Physiological Hygiene, These formed the basis for
evaluating relative task workloads using calibration curves relating oxygen con-
sumption to heart rate and respiratory rate derived for each subject during the
presimulation period. Heart rate and respiratory rate were monitored continu-
ously during the day using a two-lead telemetry system and a polygraph., Sample
traces are shown in Figure 39, Mean heart and respiratory rates were obtained
during performance of tasks, These rates, when considered as a percent of each
subject's maximum steady-state rate obtained during maximum oxygen determin-
ations, permit comparison of relative task workloads (Ref, 4), A measurement
of each subject's maximum oxygen consumption immediately after the simulation
provided a direct evaluation of physical fitness changes in the subjects during the
simulation, Urine samples were analyzed for 17-ketosteroids and 17-hydro-
xycorticosterone (cortisol) as well as for glucose, ketones, pH and protein,
Body weight and food and water consumption were recorded throughout the
experiment as well as urine volumes and the wet and dry weight of the feces,
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The temperature of the simulator cabin as well as the intake and output tem-

peratures of suits when worn were also monitored,

SIMULATION TIME LINES

The initial crew time line was derived from previous studies (Ref., 1) and from
examining MOLAB time lines generated in related studies (Refs, 13 and 18),

The simulation activities were initially guided by the 24-hour repeating activity
sequence shown in Figure 40, The subjects alternated between sequence A and
B on a daily basis. These activities fully occupied a 16 -hour work day. As the
simulation progressed, this activity sequence evolved to an operational time line
with experimentally determined task activity time constraints. Based on this
evolution and on the mission goals to accomplish maximal scientific exploration
and optimal and efficient scientific analysis and sample collection, a functional
simulation time line was established. The meals and sleep periods were held

constant through the simulation.

PRESIMULATION CHECKOUT PERIOD

Prior to the initiation of the simulation, the NASA-furnished subjects completed
an intensive five-day presimulation checkout, This checkout involved anthropo-

metric measurements, training in the simulation tasks and the determination of

their maximal oxygen consumption and the associated heart and respiratory rates.,

The subjects began the simulation anticipating a 14-to 21-day mission. They did

not know the exact length of the simulation. This knowledge was withheld to avoid

the goal-gradient effects of increased excitement and anticipation as the com-

pletion day drew near,
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SECTION 3
RESULTS

3.1 TASKS

3.1.1 Driving Task

The average of the subjects' driving errors and tracking off-times for both
displayed frequencies (speeds) are shown in Figure 41 as a function of time

in the simulator. Driving errors and their standard deviations for both

subjects at speeds 1 and 2 (Figures 42 and 43) were generally independent

of displayed frequency (speed) of the tracking tasks. Tracking off-course

time was also largely unaffected by the speeds displayed (Figures 44 and 45).
Tracking remained generally uniform throughout the simulation, tending to

become better with time, with the exception of day 14 where an appreciable
worsening in performance occurred. Driving performance was more erratic
after day 13. A comparison of the subjects' driving performance shows the

same trend for both subjects (Figures 46 and 47). Though both subjects showed

a performance decrement on day 14, Operator 2 did not show a performance decrement
on day 17 as did Operator 1. (Graphs and standard deviations of each subject's
driving error and tracking off-course times for each speed are given in Appen-
dix I.) The worsening of performance on day 14 is believed to be caused by the
subject' s anticipation of this significant milestone day. According to the sub-
Jects, this anticipation was appreciable as reported in post-simulation debriefings.
Support for this belief independent of the subjects' opinions will be evident in
discussing the navigation task results. Operator 2's generally better performance
is attributable to his experience in flying aircraft. Of most significance is the fact
that both subjects maintained consistent and improving task performance for 14 days
and did not show serious performance decrements throughout the entire 18 days.
This performance occurred despite the fact that several equipment problems inter-
rupted the driving task. In addition, the modified Apollo control had an electrical

¢
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and mechanical dead spot at its null point which annoyed the subjects to the
extent that they removed all springs from the control the evening of the ;

12th day in the simulation. This alteration did not, however, affect performance
(Figure 41); the next day's driving performance was nearly identical to that
preceding the control alteration. (It should be noted that all driving task equip-
ment with the exception of the control stick was external to the simulator, the
display being viewed through a shutter apparatus that could be closed for

display removal. Electronic equipment repair was performed without disturbing
the subjects.)

3.1.2 Monitoring Tasks

3.1.2.1 Driver's Off-Course Time Monitoring -- Figures 48 through 52

';6—100
(@]

driving speeds. Operator 1's monitoring tended to improve with time up until

present the average precentage error (At ) for both subjects at different

about day 12 (Figures 49 and 50) in general accordance with Operator 2's
driving off-course time. Operator 2's monitoring performance was more
erratic and did not show any pronounced trend (Figures 51 and 52). The
apparent worsening trend in Operator 1's performance after day 12 is
attributable to the treatment of his error as a percentage of the time the
driver was off course and not to Operator 1's actual performance. Operator 2
tended to consistently reduce his off-course driving times (to), with the result
thatOperator 1's average percentage off-course monitoring (]téolf— 100) became
1 and

for the last four days of the simulation and is greatly exaggerated on day 18.

relatively larger. This effect is appreciable only for Operato then only
On day 18 Operator 2's driving off-time, to’ became very small (see Figures
I-11 and I-14 in Appendix I) resulting in At/to becoming large even though
Operator 1's At averaged only 0. 3 second for speed 1 and 0. 4 second for speed
2 per five-minute driving period (see Table 6). Figure 53 presents a plot of the

monitoring error (At) in seconds versus days in the simulator. This plot clearly
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illustrates that no adverse trend exists in monitoring and that the monitoring
error, At, very closely follows the driver's off-course time (e. g., compare
Figure 53 with Figures 44 and 45). Monitoring error was not appreciably
affected by driving speed.

The off-course time monitoring task is a routine task tending to be boring.
The often large and erratic standard deviation appears to reflect this (see
Figure 52 for example). Of most significance is the fact that the subjects

conscientiously and satisfactorily performed the task throughout the simulation.

3.1.2.2 Change-No-Change Light Pattern Monitoring -- The responses to the

change-no-change pattern monitoring task are shown in Table 7 and depicted
graphically in Figure 54. Increasing trial numbers correspond to increasing
time in the simulator. Due to equipment problems, the results through the
first 24 trials can be evaluated only in the most general terms. The last
three trials do, however, represent reliable data points and as such lend
credence to the earlier trial results. Both subjects consistently performed

this monitoring task with 86 to 100 percent accuracy.

3.1.2.3 Skill Retention/Pattern Recognition Task -- Times and errors for each

presentation of each pattern are presented in Tables I-1 and I-2 in Appendix I.
Blank columns in these tables represent days on which no monitoring tasks
occurred for that operator. Days are numbered starting with day 2, Monday,

February 21.

Figures 55 and 56 show the trends in response times and errors over days.
There were no significant trends after the first four days, when both time
and error scores dropped. This initial drop is probably due to practice
effects. On day 11 Operator 1 changed his method of responding to patterns.
He would keep trying different button combinations until one worked. A de-
crement in time and error scores on that day reflects this change. On the

following day, Operator 1 was back to normal. The rise in time and error
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scores on the last two days is the only change which could be attributed to
the simulation routine. This rise probably reflects a growing impatience
on the part of the operators which might not be present on a real mission

where the date of the end of the mission is not as uncertain.

Figure 57 is a scatter-plot of the number of times each pattern was
presented and time to correct response for that pattern, for both operators.
The correlation between these two measures, -0.54,is not high, but it is a
significant one. Onthe whole, the less often a pattern was seen the longer

it took to give a correct response.

Pattern recognition of the kind used in this task is not an easy job. The

operator had to remember seven different responses to 14 different patterns,

on some of which he had very little practice during the simulation. In addition,

it was hard to develop a simple response set to the onset of a pattern, since

these patterns differed from the ones continually occurring during the monitor-
ing task only in having one more light lighted. Also, the operator was instructed
to keep pushing the driving-monitoring button while responding to the pattern.
Considering these complications, the commonly occuring response times of 1 to 2
seconds with zero errors demonstrate a high degree of skill, skill retention

and attention in both operators. This level of performance was maintained through-
out the simulation with remarkable consistency. Malfunctions of the programming
equipment caused the operator to express frustration, but this was not reflected

in the performance scores.

3.1.3 Navigation Task

3.1.3.1 General -- Due to the high angular resolution of the periscope, angular
sightings having an average daily error greater than the accuracy of placing the

simulated lunar mountains (+0. 5 degree) occurred only twice during the simulation,
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on days 17 and 18. The average time to complete the sighting task is shown

in Figure 58. The average charting error in plotting their locations is shown

in Figure 59. The subjects performed the task progressively faster through

day 10 (gaps in the data occurred because navigation was performed only when
driving tasks were accomplished). Within the experimenter's accuracy, the
subjects performed this task very well, though charting errors were more
erratic after day 10. Figure 60 is a reduced drawing of the experimenter's
master maps. The subjects sighted on the mountains marked by an X to obtain

a "fix"" of their position. The initial time line had called for three navigation
tasks per day. The map of an approximately 200-mile lunar traverse was con-
structed on this basis. The evolving time line generated during the simulation
resulted in only two navigation tasks per day. This fact together with driving
task equipment failures resulted in the subjects' progress on the traverse being
considerably slower than anticipated. As a result, the LUNEX II was nearing
the crossover point with the mission origin (where an imaginary LEM was parked)
on day 14. This fact is believed to have contributed to the subjectd probable ex-
pectation that the mission would terminate on day 14. The actual traverse covered
by the LUNEX is described by the set of ordered points 1, 2, 3, 4, 5, 6, 7, 8, 9,
14,16, 19, origin - as shown in Figure 60. A reproduction of the subjects' map
with its calculations is shown in Figure 61. A comparison of this map with that
shown in Figure 26 indicates the effort expended on this task.

3.1.3.2 Single-Dimension Plotting of Simulated Lunar Terrain Features -- The

location of the 13 lunar terrain features presented periodically to the subjects
during the navigation task are indicated on the experimenter's map of Figure 60
those not marked with an X). The actual location of these peaks is indicated by
the points at which the rays (dashed lines) intersect. The subjects' location of
these peaks is indicated by the dotted circle. These 13 peaks were generally
located satisfactorily. This task was not scored but did prove of considerable
interest to the subjects. (The time to perform this task was not included in the

AAAAAA Ml ~ su 15 t

time to navigate and find vehicle location.) The subjec actual rays as drawn

during the simulation are showninFigure 61.
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3.1.4 Audio Balancing

The results for this task are shown averaged over both subjects in Figures 62,
63, and 64. Differences between the subjects were small, although Operator 2
was generally better at matching frequencies than Operator 1. The frequency-
matching errors and time were not remarkable throughout the simulations, no
effects due to stay in the simulator being observable. Days 6, 7, and 15, how-
ever, show an increase in error with large standard deviations (Figure 64).

The cause is not known.

3.1.5 Sample Measurement

The results of the sample measurement task are shown in Figures 65 and 66.

The subjects were able to decrease their measurement times without affecting
their accuracy during the simulation. The subjects were able to measure the discs
to an accuracy better than 0. 0020 centimeter (0.0008 irich) throughout most of

the simulation. This task clearly illustrates the ability of motivated subjects to
consistently perform a high-accuracy task during an extended lunar surface

simulation.

3.1.6 GPI Task Results

The results of this task will be presented at a later time in a Honeywell Apollo
Systems report.

3.1. 7Comparison Between Subjects

Comparisons have been made between subjects in the preceding task results.

A comparison of subject performance on these tasks over the simulation is shown
in Table 8. In the light of Operator 2's pilot experience and possible age difference
effects, subject differences are not noteworthy with the exception of the driver's

off-course time monitoring task.
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3.1.8 Geophysical Tasks

During the presimulation period, the subjects were given a two-hour introduction
to the geophysical problems and their associated equipment. Operator 2's
background included a geology course during college. Operator 1 had no prior

exposure to geology or its methods.

3.1.8.1 Rock Sample Analysis* -- A summary of the results is given in Table 9.

The results shown are based on an evaluation of the rock samples over the entire

mission. Two analyses of the rock samples were performed, one being completed
in the mid-portion of the simulation, the other in the latter phase. The second
analysis did not contain the gross error cited in Table 9. The principal result

of this task is to indicate that men with very little geological training can, with
the proper choice of elementary equipment, discriminate between varieties of
rock in a judicious manner such that only one sample of each variety may be
returned to earth.

3.1.8.2 Mineral Point Count Task -- This was a painstaking, time-consuming

task requiring the subjects to sample carefully from a heterogeneous mixture

of tiny mineral grains and then to sort and count using a binocular microscope.
The subjects did not have enough time to perform the task to their satisfaction.
They did, however, count over 1000 mineral grains in a total of seven samplings
from the mixture provided. Each of the three mineral categories were sub-
divided into the three mesh sizes. The subjects did not have time during the
simulation to convert their data into the final percentage form required. This
data was converted by the experimenter with the results shown in Table 10
together with the actual percentages. Though there are obvious differences
between the experimental and the actual percentages that exceed the differences
implicit in weight-versus-number percentages, there was sufficient uniformity
to permit the subjects to make meaningful conclusions about their unknown
sample mixture., For example, there were equivalent percentages of medium
grains in all minerals present; likewise, there were more small quartz minerals
then any other species, and there were comparable amounts of small pyrite and

*This task was designed and graded by Dr. G. Rapp, University of Minnesota.
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pyroxene minerals. These results indicate that detailed analyses of geological
samples are possible in a lunar surface vehicle. Both subjects felt, however,
that a task of this type is too time consuming for an actual mission and that

rapid analysis techniques or retrieval for earth analysis of the entire surface
sample would be better.

3.1.8.3 Petrographic Slide Analysis -- This task was performed very well by
both subjects. This fact is especially impressive since neither subject had
previously used a polarizing microscope. The correct answers for the analysis
are shown in Figure 67 to indicate to the reader the type of response required.
The.subjects were scored on the basis of 10 total points, a half point each for
the decision to collect or not collect the sample and a half point (or appropriate
fraction of point) for the analysis of the slides components. The subjects each
performed two analyses of the 10 slides during the simulation period. Operator 1
got 60 percent right on his first analysis and 80 percent right on his second
analysis. Operator 2 got 83 percent right on his first analysis and 85 percent
right on his second analysis. A task of this sort could easily be accomplished

on a lunar mission if the appropriate rock crushing equipment were available.

Mounting unknown mineral samples on petrographic slides and analyzing them
with a polarizing microscope permits the collection of distinct rock samples
with maximized information and minimum return payload weight. As with the

other geophysical tasks, this task can be accomplished with little geological
training.

3.1.9 Minnesota Multiphasics Personality Inventory*

The subjects were given the Minnesota Multiphasic Personality Inventory*

(MMPI) during their first day in the simulator and again on the 18th day. The

M

“Mr. Floyd Ayers, psychologist of the American Rehabilitation Foundation,

Minneapolis, kindly consented to analyze the Minnesota Multiphasic Personality
Inventory administered to our subjects.
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profile for both subjects on each of the two testings were well within normal

limits. The profiles are shown in Figures 68 through 71.

A complete test evaluation is included in Appendix IV. Due to the personal
nature of this test, this appendix is published as a separate document and is
available for limited distribution through the office of Dr. Stanley Deutsch,
OART, Washington, D.C.

EXTRAVEHICULAR ACTIVITIES

The subjects were permitted to exit from the LUNEX II approximately once a
day per subject for 30 minutes to one hour. This activity was always per-
formed in inflated (3. 5 psi) pressure suits. The operator preparing to exit
donned his suit in the airlock without assistance. The operator remaining
inside assisted the exiting operator with his PLSS donning. The operator
remaining inside donned his suit in the cabin and remained in the vented suit
condition during the other operator's outside activity. The exiting operator
was required to wait 5 minutes after pressurizing and securing the inner air-
lock door while a simulated airlock pump-down cycle took place. The air-
lock volume and ceiling height were found to be completely satisfactory for
this. However, during the simulation the subjects installed hand holds in the
airlock to assist them in donning and doffing the suit and maintaining position
during airlock pump-down and pump-up. Efficient inflated pressure suit
activity is contingent (in the suits used) on proper adjustments of all straps --
the adjustment for the standing position being different from that for a
crouched or sitting position. In an airlock prohibiting standing erect, it was
found to be highly desirable to have all pressure suit straps pre-set for an

erect standing position.
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The subjects took a sample carrying bag and large leather mittens with them as
they exited the vehicle. The pressurized Apollo state-of-the-art gloves were
easily punctured by the sharp rock samples to be retrieved, making protective
mittens necessary. Treadmill activity in pressurized suits was found to be
sensitive to subject experience (experience on treadmills in the shirt-sleeve
condition did not appear totransfer sigrificantly to the inflated suit condition), on
the particular pressure suit worn and on the suit temperature. Physiological
effects and adaptation to working on the treadmill in pressurized suits is dis-
cussed in the Physiological Measures Results Subsection(3. 4). For inflated

suit work it was found that a treadmill belt wider than 61 centimeters (24 inches)
is desirable. The subjects enjoyed the treadmill exercise and looked forward

to it. Neither subject experienced difficulty in performing the task. Both pro-

gressively improved in their ability to do work on the treadmill.

EMERGENCY STUDIES

Emergencies can be expected and must be anticipated in any lunar surface
mission. In the present simulation, possible emergencies could not be sys-
tematically examined in detail without a major disruption of the simulation.

It was possible, however, to perform four simulated emergencies plus a pro-
cedural examination of the effect of temporary disability of one operator. The
principal objective of these emergencies was to evaluate the vehicle volumes

during various emergency activities.

3.3.1 Rescue of "Injured' Operator

During one of the subject's extravehicular activities the other subject was
told that the outside operator was in serious danger requiring immediate

rescue. In the meantime, an inflated Arrowhead Mark II suit with a back-
pack was substituted for the outside operator - the outside operator being

permitted to depressurize and retire to an isolated area immediately outside
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the LUNEX II and the rescue area. Verbal and visual contact with the operator

"standing by'" during the rescue was minimized. The weight of the inflated

|
}
|
Mark II suit and backpack was about 23 kilograms (50 pounds), approximately the
l weight of a similarly suited astronaut on the moon. The inside operator's

task was to don his suit and backpack, pressurize, drop cabin "pressure'' (the

I airlock being "depressurized') and proceed with the rescue tow line to the
injured operator. A power winch was controlled by the experimenter on the

' command (via the communication system) of the operator performing the rescue.
The first rescue was performed by Operator 2 on the second day of the sim-

‘ ulation. The results pertinent to this rescue indicated the following:

e Power assistance is mandatory for this type of rescue.

° With power assistance, Operator 2 was able to rescue the "downed
operator' and successfully secure both himself and the inert

"operator' in the airlock.

e A means of restoring cabin pressure from the airlock should
be installed to permit the returning operators to enter the
main cabin area as soon as possible after the rescue is com-

plete.

° The task is physically strenuous as reported by the subject
and as indicated by his heart and respiratory rates (Figure 72).

e Operator 2 rated the task as ''acceptable for emergency conditions
only", a numerical rating of 3 on the modified Cooper scale (this

scale is shown in Figure 38).
) Approximately 30 minutes were required to effect the rescue.

° Assistance was needed in getting the backpack on,
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Operator 2 used the procedure found necessary in previous studies (Ref. 1)
to place a recumbent pressurized operator in the "'spread eagle' position in
the airlock; i.e., the recumbent operator is put in the airlock head first in

a face down position, resulting in his chest facing the inner bulkhead, ‘The
operator performing the rescue then follows, securing the outer airlock door
behind him.

Operator 1 performed the emergency rescue on the 15th day of the simulation.
The rescue was in every respect similar to test performed by Operator 2 up

to the insertion of the "injured operator' into the airlock. Operator 1 was
instructed to place the "injured operator' in the airlock according to a pro-
cedure that was found inadequate in previous studies (Ref. 1). In this pro-
cedure the rescuer backs into the airlock pulling the injured man in so that

his backpack faces the inner bulkhead. This was found to be unworkable in

the 1. 31 cubic meters (47-cubic-foot) airlock previously studied but it was
believed that the present airlock - having a volume of 1. 86 cubic meters

(65. 9 cubic feet) in the emergency condition - might allow this procedure to be
followed. The results showed this belief to be in error. Operator 1 succeeded
in getting the "injured operator'' partially into the airlock - the "injured
operator's' legs projecting from the airlock. In attempting to step over the
injured operator to improve his position, the "injured operator' fell against
Operator 1 pinning him against the wall where his backpack wedged. Operator 1
was rendered immobile and had to depressurize to get up. Operator 1 rated

the task "acceptable for emergency only'.
The significant findings of these simulations are:

° It is necessary to have well worked out procedures for getting
two pressurized operators, one being incapacitated, into a small-

volume airlock.

° The airlock will contain two pressurized operators - one being

totally immobilized.
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e Fower assistance is necessary.

[ Further study of emergency rescue procedures, examining
various mechanical aides and alternative airlock geometries

is required.

3.3.2 Emergency Loss of Cabin Pressure, Airlock Pressure System

Remaining Operative

Both operators were unexpectedly aroused from their mid-day rest period on
the 11th day by a warning horn. They were told that cabin pressure was slowly
falling due to a meteorite impact. They were to proceed immediately to the
airlock where they would don their suits and backpacks, pressurize together,
drop airlock pressure and exit the LUNEX II to make emergency repairs, (the
repair was simulated by removing adhesive patches affixed to the outside
surface of the vehicle). While they were outside the vehicle they were informed
via the communication system that the lunar surface crust was giving way under
the LUNEX II and that they must immediately re-enter the vehicle, and, without
repressurizing the cabin, drive the LUNEX II to a safe location. The subjects
entered, doffed their backpacks and maintained suit pressure on the cabin
system, which was assumed undamaged, leaving their backpacks in the air-
lock. Simulated cabin bressure was then restored and the emergency was
terminated. Total time for the emergency was somewhat over 2. 4 hours.

This simulation had the following results:

° The airlock volume was sufficient for the two crew members to
don suits and backpacks and simultaneously inflate their Apollo

state-of-the-art suits.

e The inner airlock hatch is not large enough to permit access of
a pressurized man with the backpack on but permitted passage of

the operators in inflated pressure suits.
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° Though the driver's hand control position was less than optimal
in the inflated suit condition, both driving and monitoring tasks
could be successfully accomplished, driving error for Operator 2
being approximately one standard deviation larger than in the

average shirt sleeve condition.

e Cabin volumes, driving station volumes, and chair locations were
adequate for inflated pressure suit use. However, one of the
adjustable lights in the cabin was broken by the helmet of Operator 1,

suggesting that all light fixtures be recessed or guarded.

™ Hand holds were recommended (and later installed) on the upper side
of the wall adjacent to each chair to facilitate ingress and egress

from the chairs while in the inflated suits.

° All equipment must be kept stowed in its proper place at all times

to avoid unnecessary delays during emergencies.

° The suits and their associated equipment must be kept in a constant

state of readiness in the event of an emergency.

° Excessive physical exertion was not required by the subjects during

this emergency as evidenced by heart rates (Figure 73).

e Both operators rated the task "acceptable for emergency conditions",

number 3 on the Cooper scale.

3.3.3 Emergency Loss of Airlock Pressure with the Cabin Pressure

System in Jeopardy

The emergency was simulated on the 16th day. The subjects were told that the
airlock had been punctured by a jagged rock, resulting in a fairly rapid
pressure loss and putting the cabin pressurization system in jeopardy. The

operators' task was to secure the inner airlock door, don suits in the cabin
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using their backpack air supply rather than the cabin air supply, and drive the
vehicle to a smooth area for repair. Both operators were then to egress
from the vehicle and proceed to ''repair' the vehicle. They were then to re-
enter the vehicle, securing both hatches after them. Each operator was then
requested to perform the Gimbal Position Indicator Task, drive and monitor
once more, and then depressurize on the assumption that both cabin and air-
lock pressure were restored. The object of this simulation was to get as
much simultaneous interaction of the two subjects with the simulator's re-
stricted volume and geometry as possible while in the inflated suit condition
requiring the use of the PLLSS. The emergency lasted 1. 75 hours. The
principal results were:

° Both men could simultaneously don their pressure suits and inflate
them in the cabin. The subjects independently rated this task as

"satisfactory', a number 6 rating, on the modified Cooper scale.

® Driving and monitoring while pressurized by the PLSS is very
difficult. The short PLSS hoses greatly restricted the operator's
mobility. The encumbrance resulting from carrying the back- -
pack with one hand while trying to ingress or egress from the chairs

was severe. Specific suggestions made by the subjects were:

» The backpacks should be stored immediately behind the

seats to permit hookup to them while seated

» It should be possible to wear the backpacks while seated
or the hoses shouid be iong encugh tc place the backpacks
on the floor without being encumbered by them or their

hoses.

» The backpack connecting hoses should be long enough to
permit each operator to stand up without lifting the backpack.

» Controls, displays and seats need to be designed with the

pressurized suit in mind.
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e Both subjects rated this task as acceptable for emergency

condition only.

e Ingress and egress to or from the cabin in the inflated suit
condition cannot be done with the backpack on and can only
be accomplished marginally while carrying the backpacks.
(Operator 2 rated this effort totally unacceptable and dan-
gerous.) To permit passage with the backpack on, both the
aisle and the inner airlock door need widening, the critical
dimension being the depth from the chest to backpack back

surface,

° The aisle provided insufficient space for Operator 2 to operate
the Gimbal Position Indicator thumb wheels. Operator 1 could
get into position and perform the task but with considerable
difficulty. Operator 2 rated this task as ''unacceptable even
for emergency condition'. Operator 1 rated the task ''acceptable

for emergency condition only''.

° Excellent communication systems are necessary at all times but
especially during emergencies. A critical communications
failure prevented Mission Control from maintaining contact with
Operator 2 during a suit failure which caused a sudden drop in
suit pressure followed by a rapid rise and then decompression.
The emphasis on good communications cannot be stressed too
highly.

. Donning of the backpack outside the vehicle with both subjects

pressurized can be accomplished with little difficulty.

3.3.4 Temporary Disability of One Crew Member

The possibility of one crew member being temporarily disabled by a minor

illness which would not warrant returning to the Lunar Excursion Module
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was examined, Operator 1 was assumed ill, requiring temporary bed rest

(no pressure suits were required for this activity). This irregular situation
was maintained for approximately 7 hours on day 16 of the simulation. Two
bed configurations were examined. Partial extension of the upper sliding

bunk (Figure 74) permitted Operator 2 to walk through cabin but did not

permit access to all task equipment. A satisfactory arrangement was to have
the upper bunk fully extended with the disabled operator reclining on the bottom
bunk (Figure 75). This permitted Operator 2 to use the upper bunk as a plat-
form to crawl from one area to another and provided an area on which to per-
form tasks. Audio balancing, Gimbal Position Indicator settings, sample
measurements, navigation, charting and driving were performed satisfactorily
in this manner. Operator 2's performance of these tasks was not deleteriously
affected. Both operators rated this emergency condition as "satisfactory' -

number 6 on the modified Cooper scale,

PHYSIOL.OGICAL MEASURES
3.4.1 Diet

During the 17 full days of the simulation (excluding the first and last half days),

each subject consumed an average of 615 grams (dry weight) of food per day

provided in the dehydrated food diet. This diet contains approximately 16. 6

percent protein, 18, 3 percent fat and 60. 1 percent carbohydrate, about 5 percent
being estimated as ash and bound water. (The diet shown in Figure 17 was not rigor-
ously adhered to though accurate accounts were kept of daily variations.) Based on
the physiological heat values for metabolic calculations* and an average con-
sumption of 615 grams per day per man, this diet yields 2975 kilocalories per

day per man. The subjects were put on the special diet two days prior to the

*One gram of protein yields 4.1 kilocalories, one gram of fat yields 9. 3 kilo-

calories, and one gram of carbohydrate yields 4.1 kilocalories (Ref. 6, 7

and 24). It should be noted that these metabolic conversion figures vary some-
what according to the source, The Reference 32 conversion figure being somewhat
lower than those cited here.
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initiation of the simulation. In general, they found the food satisfactory. The
average coefficients of apparent digestability* were 95 percent for both subjects,
indicating efficient utilization of the diet. Specific preferences and criticisms
are listed in the Subjective Evaluation subsection (3.5). Through the first 11
days the subjects complained of being "constantly hungry'. Toward the end of
the simulation the subjects suggested fewer meals per day and, in fact, rejected
meals. The specific fluctuations in weight, water balance and physiological
measures related to these subjective obseryations are examined in the following
subsections. The time to consume a meal averaged 42 minutes per meal.

Daily fluctuations in meal consumption time are shown in Figure 76,

3.4.2 Water Balance

The subjects were permitted to drink as much water as desired. An average of
2. 15 liters of water per day was required to rehydrate the food provided. The
average daily intake and output values are shown in Table 11. Daily fluctuations
in water intake and urine and fecal water output are shown for each subject in
Figures 77 through 82, The daily values given are those obtained from summa-
tions over a 24-hour period which masks the diurnal urine cycle commonly found
(Ref. 6).

Examination of the figures reveals considerably larger oscillations in fecal

and urine output in Operator 1. At least three factors are believed to contribute
to oscillations in water intake and output in both subjects - Operator 1 apparently
being more susceptible to these factors than Operator 2. After the simulation
had been underway for 4 days, it became apparent that the subjects were com-

peting with each other to determine who could deliver the largest urine sample

*The coefficient of apparent digestability was calculated by subtracting the dry
weight of fecal excretion from the dietary dry weight intake and determining
the percent of total intake absorbed (Ref. 10).
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in a single void. An examination of the subject's log books indicated that at
times a deliberate effort was made to control micturition (e. g., from one
afternoon to the next morning) in order to deliver the largest sample. Though
this effort was not generally detectable in the data, at least two observations
are clearly due to this effort. On the 11th full day of the simulation, Operator 2
avoided micturition and delivered an exceptionally large single sample on the
morning of day 12 (Figure 80) with consequently a relatively low urine output on
day 11. A similar effect was noted for Operator 1 on days 16 and 17 with the
urine output on day 16 being reduced (Figure 79).

The second complicating factor was due to the introduction of a small amount

of alcoholic beverage (2 ounces per subject) on the 7th and 14th day of the sim-
ulation. This depressant was introduced to the subjects as a reward on these
mission milestone days. No effects directly attributable to the alcohol were
observed in the performance data, nor were significant adverse effects expected
in the physiological data. A noticeable effect, however, was observed in Operator 1
following the alcoholic beverage administrated on day 14 of the simulation. The
subject had large urine outputs and loose stool on the following day (Figures 79
and 81). Similar but less marked effects were noted in Operator 2 (Figures 80
and 82). At that time it was discovered that the subjects had somewhat loose
stools after the administration on the 7th day but had not reported it. Figures 81
and 82 essentially present a time course of water lost chiefly as perspiration.
On the days effected by the alcoholic dose notable decreases in perspiration
rates occurred probably due to the body's effort to maintain water balance.

The effect on urine output may be evident in both subjects following the 7th day
(see day 8 of Figures 79 and 80). Operator 2 was noticeably less affected

than Operator 1. The diuretic effect of the alcohol) was not as adverse as the

tendency to cause diarrhea.

*The diuretic effect of alcohol is common knowledge; its diuretic action,
however, is due to dosage irrespective of the volume of the dose. This
effect is believed to be due to the inhibition of nerve centers controlling
the release of the antidiuretic hormone (ADH). See Reference 6, p. 713.
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The use of alcohol with space food diets (despite its beneficial use as a
relaxant during non-critical activities (Ref. 6, p. 591) is not recommended
unless used explicitly in the treatment of edema with hemodilution (Ref. 6,
p. 713). Independent of the aforementioned factors, the data suggest
(Figures 77 and 78) that water intake in excess of that required to rehydrate
the food is responsive to the cyclic water requirements of the diet, water
intake being pronounced during days when the diet calls for decreased water
for rehydration. The effect of reducing the extremes of water intake cycling
could possibly be achieved by having the diet require less oscillatory re-
hydration water. It should be noted that, with the exception of days 1 and

3 (on which neither subject performed extravehicular activities), the subjects
were performing routine extravehicular tasks. It is not believed that water

losses through perspiration biased water demands in any cyclic fashion.

3.4.3 Weight Exchanges

3.4.3.1 Body Weight Changes -- Both subjects admitted to being constantly

hungry during most of the simulation. By day 14, however, their appetites
had diminished to the extent that one meal was skipped. During the re-
mainder of the simulation, food items were frequently rejected. Weight
‘changes were seen to correspond to appetite changes during the simulation,
the subjects either gaining (Operator 1) or holding a constant weight
(Operator 2) until day 14, thereafter losing weight (Table 12). This is
evident in the percent weight changes, the subjects' percent weight loss
being 3.9 percent and 3 percent respectively from day 14 to day 18

(Figure 83). The reason for the weight reversal (or the corresponding

food rejection) is not clearly understood. Water losses via perspiration
were clearly evident to the subjects following inflated pressure suit activity
on the treadmill, Increased perspiration rates are indicated also by the
decreased urine output during the last few days (Figures 79 and 80) and
the relative increase in water intake (Figures 81 and 82). The subjects
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gradually increased their capacity for work on the treadmill (see Subsection
3.4.5) and during the latter simulation days frequently performed short runs.
It has been estimated that the decreased caloric intake and increased physical
work during the last four days of the simulation can account for at least half
of the subjects' weight loss. Increased perspiration rates probably account
for the balance of the weight loss. Slight changes in muscle mass and waist
circumferences together with the weight losses indicate that the subjects

lost fatty tissue (Table 13).

3.4.3.2. Dry Weight Exchanges-- Tables 14 and 15 give the weights of feces

produced during the simulation. The dry weight of food retained in the body
(food dry weight minus feces dry weight) closely follows the dry weight of
food ingested (Figures.84 and 85). The striking reduction in food intake
during the last few days of the simulation is clearly illustrated in these

figures.

Notable oscillations occurredinthefeces weight (Figures 86 and 87). A
comparison of these figures with the dry weight of the diet indicates a
correlation between the period of oscillation of the diet dry weight with
that of the feces weight, the period being about 5 days. This correlation
is especially evident in Operator 1 (Figure 86). The amplitude of the
feces wet weight oscillations and the apparent phase shifts of the totalfeces
weight with respect to the waveform of the dry weight of the diet might be
reduced by a more constant daily diet dry weight. A superposition of the
dry weight of the diet waveform with that of the dry weight of the feces
indicates that Operator 2's feces output took about 11 days to get aligned
with the diet dry weight with respect to both phase and amplitude. Operator
1's feces dry weight output, however, had already "locked on" to the diet
dry weight waveform by the time the simulation had begun and remained
aligned throughout the simulation. Similar oscillations occurred in the
water balance results. A longer-duration simulation using this diet could

profitably have examined the effect of synchronizing of water and fecal
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outputs with diet water and dry weight oscillations to determine whether the
amplitude of subject waste outputs increases with increasing synchronization.

This subject, however, is beyond the scope of this study.

Throughout the simulation the percentage of water in the feces remained
relatively constant (70 to 80 percent) for both subjects (Figures 88 and 89).

3.4.4 Urine Analyses

A limited examination of selected urine components was made. Twenty-
four-hour urine samples were delivered to the Laboratory Medicine
Associates of the University of Minnesota Hospital for analyses of 17-
hydroxycorticosterone (cortisol) and the 17-ketosteroids approximately
every third day of the simulation. Daily 24-hour urine analyses for
glucose, ketones, proteins and urine pH were conducted at our own labora-
tories. The 17-hydroxysteroids (primarily cortisol) and 17-ketosteroids
found in the urine are given in Tables 16 and 17. The average outputs of
17-ketosteroids and 17-hydroxycorticosterone are not considered abnormal.
Normal urine outputs of 17-ketosteroid are about 15 mg/day (Ref. 6) with
a range of about 10.5 to 21.7 mg/day (Ref. 9). Normal urine outputs of
17-hydroxysteroids range from 5 to 20 mg/day (Ref. 6). High stress
levels as measured by these hormone outputs occurred on the first day of
the simulation for both subjects when the excitement and activity of begin-

ning the simulation was at its peak (Figures 90 and 91).

Operator 2's urinary output of these hormones remained relatively stable
throughout the simulation, the 17-hydroxycorticosterone level dropping off

to a stable value (Figure 91). Operator 1 showed elevated hormone outputs

on day 10 (the ninth full day). On this day a simulated cabin pressure failure
occurred. Operator 1's comment that the emergency was a ''real surprise’
appears to be directly reflected in his hormone output for that day. Urine analy-

ses for these hormones was, unfortunately, not performed for the days on
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which the other simulated emergencies occurred. The values obtained for
protein, glucose, ketones and pH were within normal limits (Tables 18 and 19).

3.4.5 Oxygen Consumption and Physical Fitness

The subjects' maximal oxygen consumption was determined prior to and im-
mediately after the simulation.* The methods of indirect, open-calorimetry
(Ref. 31) permitting the analysis of expired gasses during treadmill runs
were used. The data is summarized in Table 20. The maximum oxygen

consumption (measured as cubic centimeters of oxygen consumed per kilo-

subject by the stay in the simulation. This fact demonstrates that the
aerobic work capacity (e.g., physical fitness) of both subjects was main-
tained over the 18-day period through the exercise obtained from extra-
vehicular inflated pressure suit activities without a requirement for a
supplementary physical exercise regime.** Based on their maximum
oxygen capacities the subjects were in good, but not excellent, physical

*Performed by Dr. Jack Alexander of the University of Minnesota Laboratory
of Physiological Hygiene. The subjects performed treadmill runs at 6 mph
over a three-day period with progressively increasing grades. The subjects'
maximum oxygen capacity was taken as the highest rate of oxygen consump-
tion measured with increasing treadmill grades. The results indicated that
maximum oxygen capacities were reached on the first trial since the rate
of oxygen consumption did not increase with increasing work loads thereafter.
Oxygen consumption was measured by continuous analysis of expired gasses
using a Beckman oxygen/carbon dioxide analyzer and flow meter. Heart
rates were telemetered continuously during oxygen consumption determina-
tions.

*%*Work done by each subject on the treadmill during the extravehicular activity
was as follows:

First nine days: Two 10-minute periods at 1 mph, 4 percent grade.

Days 10 through 15: Two 10-minute treadmill profiles were run beginning
at 1 mph and 4-percent grade with the speed gradually being increased
to 2. 6 mph where it was maintained for 3 minutes.

Days 16 through 18: In addition to the 2. 6-mph profile, each subject ran
for approximately one minute at speeds on the order of 5 mph.
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fitness prior to the simulation (Refs. 24 and 30). (It may be reasonable to assume
that the actual astronauts will be in less than optimal physical fitness after

their journey to the moon in the Apollo craft, hence it is not felt that a

rigorous physical fitness program prior to the LUNEX II subjects beginning

the simulation would alter the validity of this study's results.)

Heart rates and oxygen consumption changes during submaximal and

maximal work are shown in Figures 92 through 95 as a function of time on |
the treadmill. The relationships of heart rate to oxygen consumption are

shown for each subject in Figures 96 and 97. The figures were obtained |
by fitting the data points with a straight line by the least squares method. |
These relationships essentially ' calibrate' each subject, providing a

means whereby relative oxygen consumption during various tasks per-

formed in the simulation can be obtained directly from the heart rates

measured during performance of those tasks (Ref. 24 and 25). In addi-

tion, heart and respiratory rates obtained during a variety of task

performances can be treated as the ratio of the measured value, P, to

the value, Pc, achieved during maximal work. This permits the comparison

of each subject's physical effort as a percentage of his own steady-state

maximum (Refs. 1 and 4). This treatment is utilized in subsection 3.4. 7.

Selected treadmill activities performed by the subjects during the simula-
tion are shown in Figures 98 through 102, Based on the heart rates observed
during these activities and those obtained during the measurement of

oxygen consumption (Figures 92 through 97), estimates were made of the
oxygen consumption during inflated suit treadmill activity.* The Portable
Life Support System (PLSS) currently considered allows energy expendi-
tures of 5. 04 kcal/min (1200 BTU/hr) for four hours, 6.73 kcal/min

(1600 BTU/hr) for three hours and 8.40 kcal/min (2400 BTU/hr) for short

periods of five to ten minutes (Ref. 21). The estimated oxygen consumption

*These estimates were made by summing the oxygen consumption per minute
values corresponding to the heart rate observed each minute of the inflated
suit treadmill activity.
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data obtained during treadmill exercises, including walks up to 2. 6 mph,
showed that the rate of energy expenditure was in excess of these maximum
allowable PLSS rates (Figures 98 through 102). During treadmill exercises
the subjects normally walked about 0. 3 mile (though occasionally 0. 5-mile
walks were performed) in ten minutes, usually performing two such activities
during each extravehicular task. Such an effort is estimated to consume 30
(Operator 1) to 50 (Operator 2) liters of oxygen when the walking rate at
times reaches 2. 6 mph (see Figures 98 through 101). Thus, each operator
consumed on the order of 144 to 240 kilocalories respectively in the
20-minute exercise, with rates exceeding the maximum capacity of the PLSS.
These results indicate that the work done while in the inflated suit is not
limited by the man's capability but by the present ability to provide the

necessary oxygen through some portable system.

It is interesting to note that in suits inflated to 3.5 psi and on a four percent
grade, Operator 1 changes his pace from walking to running at 4. 5 to 4. 8 mph;

Operator 2 starts running at 5. 4 mph.

Based on the known composition of protein, carbohydrate and fat in the
diet and the use of standard equations for calculating metabolic rates from
diets of known constituents (Ref. 9, page 197) it was calculated (for 17
full days using the actual amount consumed) that 632 liters/day of oxygen
were consumed and 546 liters/day of carbon dioxide given off to give a
respiratory quotient of 0. 87. These calculations also showed that 368
grams/day of metabolic water was utilized. From the subjects' height,
weight and age, the Basal Metabolism can be estimated (Refs. 6, 7 and 8).
Operator 1 has a surface area of 1.91 square meters, and Operator 2's

is 2. 13 square meters as estimated from standard nomograms (Refs. 7 and
8). Knowing the surface areas, the estimated basal metabolisms are
1780 kcal/day for Operator 1 and 2000 kcal/day for Operator 2. If a total
of 3000 kcal/day are utilized, then Operator i was working at a rate ap-
proximately 1220 kcal/day above his basal metabolism and Operator 2 at

a rate 1000 kcal/day above his basal metabolism.
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It is of interest to estimate the relative energy expenditure required to per-
form various task categories using the heart rate and oxygen consumption
relationships derived for the subjects. Calculations of these relative energy
expenditures in terms of the estimated oxygen consumption are presented
in Tables 21 and 22. These estimates have only a relative validity, parti-
cularly the oxygen consumption estimates for tasks utilizing small muscle
group activities. The estimates for tasks requiring large muscle group
activity are, however, considered quite good. No correction to standard
temperature and pressure conditions (STP) was made since both the oxygen
consumption calibration tests and the simulator tasks occurred at com-
parable temperatures (~75°F) and pressures (760 mm Hg). (Converting

to STP results in a reduction of oxygen values by about eight percent.)

The daily estimates calculated in this manner indicate that Operator 1
consumed on the average of 630 liters of oxygen per day whereas Operator
2 consumed 670 liters of oxygen per day. These differences are trivial
when compared as oxygen consumed per kilogram of body weight. The
results shown in Tables 22 and 23 indicate that the increased pressure suit
activity on the treadmill during the latter half of the simulation resulted

in a concomittant increased expenditure of energy. This fact is no doubt
meaningful in light of the weight losses during the last three days of
simulation, but it does not explain the tendency to discard food during this
same time period. Trends in estimated oxygen consumption as a function of

weight loss are shown in Table 23.

An independent check of the average daily oxygen consumption estimated
from heart rate and body weight and surface area can be made by comparing
this estimated oxygen consumption with that estimated from the metabolic
equations for the processing of known food mixtures. By this latter means,
it was shown that on the order of 632 liters of oxygen per day are utilized.

A comparison of this figure with the 630 to 670 liters of oxygen per day
estimated from heart rate and basal metabolism estimates indicates a

good agreement, especially for Operator 1.
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3.4.6 Heart and Respiratory Rates During the Simulation

Table 24 shows the average heart and respiratory rates for principal
simulation tasks. These values are expressed as P/P. ratios (see Sub-
section 3.4.5) in Table 25. It is apparent that tasks requiring large muscle
group activity can be distinguished from those tasks which are basically
sedentary (Figures 103 and 104)., The navigation task, requiring a near
standing position and limited upper torso activity was accomplished with
less effort than previous simulated navigation tasks (Refs. 1 and 4). A
comparison of P/ P, values shows that both subjects worked at similar
levels of their maximum work capacity for any given task. No trends

in heart or respiratory rates for any task was observed throughout the
simulation. For this simulation, only tasks involving the active use of
the pressure suit required high work outputs as measured by heart and
respiratory rates (Figures 103 and 104). During outside inflated suit
treadmill activity, the inlet temperature was kept at 54°F, the outlet
temperature generally holding at 84° to 89°F,

3.4.7 Health and Hygiene

The subjects maintained high morale throughout the experiment. Irri-
tability was recognized only during the latter few days of the simulation
and then only when there had been an equipment failure. No inter-subject
irritability was observed throughout the study. To assure subject well-
being and to gain information on the effects of the confinement on the
subjects while they were still exposed to a restricting environment, a
complete medical examination was given each subject after they had com-
pleted 10 days in the LUNEX II. To minimize disruption of the simulation,
the subjects were advised of the doctor's visit and given instructions con-
cerning the conduct of the examination. The physical examination was
performed by Dr. Milton Alter from the Department of Neurology at the

University of Minnesota. The doctor entered the simulator and performed
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the examinations in the cabin area. During his examination of one subject,
the other subject remained in the airlock -- the inner and outer airlock door
being closed. The detailed examination results are given in Appendix II.

Both subjects were in good physical and psychological condition. The
subjects, particularly Operator 1, had mildly infected eyes. It was suggested
that the infection might be related to exposure to ultraviolet light. The
intensive use of microscopes and their light sources plus the driving task
oscilloscope display are believed to be the cause of the eye irritation. The
continued use of microscopes to perform daily tasks is also believed to be

the cause of the subjects feeling deficient in depth perception upon complet-

ing the simulation study.

The subjects routinely performed hygiene tasks during the simulation. Oral
hygiene was practiced after every meal using an electric toothbrush, Non-
caloric chewing gum was also used at the subjects' discretion. Due to the
high perspiration rates after extravehicular activities, at least one change
of flight underwear and socks was required per day. (The absorbent cotton
underwear quickly became soaked. Since the underwear prevented venti-
lating air to evaporate perspiration on the body, it is believed that body
cooling due to vaporizing perspiration did not seriously effect the meta-
bolic heat exchanges discussed in Subsection 3.4. 5. Soap and water was

a necessary supplement to the benzylchloride-treated cleansing swipes

provided. No detrimental effect due to not shaving was noted.

SUBJECTIVE EVALUATIONS

3.5.1 Cabin Habitability

The subjects' numerical rating of the LUNEX II vehicle cabin habitability is
shown in Table 26. These ratings were made mainly with the vehicle volume,
sleeping accommodations, and ceiling height in mind. As such they indicate
that, after two weeks, both subjects found the vehicle volume and ceiling
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height satisfactory. Some of the principal comments relating to cabin habit-

ability are summarized as follows:

The crew seats in the cockpit should be adjustable, permitting
fore and aft and up and down motion and be able to be reclined
30 degrees. The seats, however, were very satisfactory for

this simulation.

A supply of hooks and nails (or their equivalent), some rope and
webbing should be provided so that crewmen can place them

where needed.

Provisions should be made to allow the pressure suits to hang
full length in the airlock.

Waiting in the standing position for airlock pump-down and
pump-up was very stressing (with the low ceiling height).
Pressurized crewmen with backpacks should be able to sit down.
Hand holds are necessary to aid in sitting down and getting up.
(After installation of hand holds the subjects were able to sit
down in the airlock during simulated pump-down and pump-up

cycles.

A storage shelf should be provided in the airlock for storing

spacesuit helmet and gloves.,

Crew passage in the aisleway while another crew member is

working in the center aisle area is awkward or impractical.

The width of the opening to the water supply should accommodate

the head of a crewman.

The water supply should be positioned equally distant from the
crew eating seats to provide both crewmen easy access. (Food
preparation was a shared task; one operator rehydrated the

food while the other mixed it.)

An emergency water supply should be provided for use if the

main source is interrupted.
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The swivel cockpit seats were an excellent idea. A means to lock

the seats in their forward position should be provided.

The mobile aisle seat was good; however, a slightly larger seat
would be desirable. After 15 minutes sitting became uncomfortable

(seat pan was approximately 29 centimeters in diameter).

Force gradients on the hand control should be negligible. Removal
of the control springs greatly reduced the irritating center null

position,

The width of the center aisle was at first thought too narrow for
sleeping; however, the addition of foam rubber sleeping pads and
several days' experience greatly improved sleeping.

Head bumping on the low ceilings increased during the early part
of the simulation, especially from thethird day on. Installation
(accomplished by the subjects) of foam rubber padding on the
ceiling and around hatch-ways greatly improved the situation.

A portable chair (camp stool variety) did not work well in the cabin.
It became jammed between the front seats and was a storage
problem. It was useful for checking out the pressure suits in the

airlock.
All lights should be recessed.

Emergency operations dictate that the inner airlock hatch width

be increased to accommodate pressurized spacesuits with PLSS.

Driving hand control should 7.5 centimeters (3 inches) forward (fore)

for pressurized suit operation.

Cockpit seats were too close to the control panel for writing on
the slide-out boards,

Positive locking mechanisms are required for the airlock doors.

Force and travel on airlock hatch wheels were good.
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® The inner airlock door should definitely swing in both directions.

® After 14 days, the cabin interior volume was satisfactory, though
Operator 2 (93 percent standing height) did complain of a cramped
neck by the end of the day.

® The work top counter area was more than adequate.

® Reliable communications are required for all phases of this type

of simulation.

® The center-aisle slide-out work board was the best area to perform

sample measurement, charting and geophysical tasks.

® Storage cabinet volume was adequate. Smaller cabinet divisions
would be desirable.

® The airlock volume was adequate for donning and doffing space
suits, both in normal and in simultaneous two-man emergency

tasks.
® The driving task was distressing to the eyes.

® Underwear and socks must be changed after each extravehicular

activity.

® Interior color schemes were drab and depressing (colors were
according to Apollo/LEM specs and Reference 23.)

3.5. 2 Diet Evaluation

Comments on the diet were taken from the subjects' 3-, 7-, and 14-day
appraisals as well as from their personal log books. Though they con-
sidered the food generally satisfactory, certain items and conditions were
disliked. It was desired that specific dehydrated food items be identified on
the individual package along with the quantity of hot or cold water to be added.
Straws were requested for the cold drinks. Difficulty was experienced in

getting cold drinks to go completely into solution upon rehydration. Coffee
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or a hot drink was considered to be highly desirable in the first meal of the
day. Eating and drinking directly from the plastic food containers caused
some irritation to the mouth due to the sharp edges on the seams of the bags.

An evaluation of specific food items is presented in Table 27.

3.5.3 Simulation Evaluation

Both subjects found that it was not unduly uncomfortable to perform the
assigned tasks within the confines of the LUNEX II. Prior to the simulation
initiation, the subjects had serious doubts about performing tasks and living
in a vehicle which did not permit them to stand up and which was apparently
very restricting. Approximately four days were required to adjust to the
new environment after which '"there was almost a feeling of exhilaration

to be able to work within such a restricted volume' (quoted from Operator
2's notes). Both men enjoyed outside activities and meal time most and
found equipment failure most objectionable. Post-simulation rank order-
ing of the seven principle tasks showed both operators preferred the navi-
gation and geophysical tasks the most and monitoring of the driver's off-
time the least. The subjects' rank ordering of tasks (Table 28) correlated
significantly at the five percent level, the Spearman Rank correlation
coefficient being 0.82. Both subjects independently felt they could have
continued the simulations for 21 days or longer. A summary of some of

the subjects' general comments concerning the simulation follows:

e The simulator should be physically remote from the monitor
stations and the associated equipment external to the simulator
in order to minimize external sounds and to enhance simulation

realism.

e The subjects should have more responsibility and control over
simulation activities.

12504-ITR2




T T e

- 49 -

The initial simulation schedule was too rigorous. An hour
relaxation period during the day and cessation of task activities
an hour earlier in the evening proved beneficial and was greatly
appreciated.

A tradeoff between extravehicular tasks and intravehicular
scientific and routine tasks is reqiired. Extravehicular tasks
are very time consuming, resulting in serious curtailment of
intravehicular task activities if more than one extravehicular
activity per day is required. Detailed, time-consuming
scientific tasks are not advisable,

Equipment breakdowns or other difficulties resulting in task
interruption should result in the interrupted task being deleted
rather than resulting in a formidable accumulation of unfinished
tasks.

Because of the time required to prepare andingest meals, three
or even two meals a day instead of four would be desirable --
the total caloric intake being unchanged. '

Slight perturbations in a functional task time line can disturb
the schedule by several hours. Extensive crew training with
operational state-of-the-art equipment would be required to refine

and make operational a real-mission time line.

Individual donning of a PLSS by an operator in the inflated suit

will require further study.
Sitting became uncomfortable after about seven days.

The simulation was unrealistic due to lack of system and equip-
ment sophistication. The proximity to the monitors and inter-
action with the test conductors further reduced the simulation

realism,

Both subjects felt that further study is needed in the areas of emergencies

and meal consumption (i.e., the number of meals per day and the caloric
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content of each meal). One of the subjects stated that their morale was very
high the first week, then fell off to a plateau which was maintained throughout

the remainder of the simulation.

CABIN PARAMETERS

Throughout the simulation, the subjects made adjustments and additions to
the cabin interior. Hooks were installed to support food sacks, thus con-
serving work-top space and preventing rapid heat transfer between hot and
cold items which occurs when the items come in contact after mixing
(Figure 9). Handholds were installed in the airlock and main cabin area to
facilitate mobility in inflated pressure suits. The ceiling of the cabin and
airlock was covered with a half-inch layer of plastic foam padding on day
10 of the simulation., This padding greatly alleviated the discomfort of the

low ceiling.

The cabin ventilation flow rate could be controlled by opening or closing
ventilation louvers in the cabin. Normally the cabin ventilation was kept
near maximum during the day and decreased by about 50 percent at night.
This variation was maintained at the subjects' request in order to prevent
the subject from becoming cold during sleeping hours. Figure 105 shows
representative temperature fluctuations of the simulator cabin. As can

be seen on this figure, the temperature of the vacated cabin with maximum
ventilation rates was about 20°C (68°F). The cabin temperature is elevated
about 2 to 4.4°C (4 to 8°F) by heat given off by the subjects. A consistent
rise in cabin temperature occurred each morning when subject activity
commenced. Cabin temperature was generally about 23°C (75°F) with

fluctuations of +1.4°C (£2. 5°F) occurring due to varying subject activities.
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3.7 TIME LINE EVALUATION

Task activities initially followed the sequence shown in Figure 40, Though
the experimenters knew from previous studies (Ref. 1) approximately the
times required to perform the tasks, these times were not given to the
subjects. The object was to empirically derive new task times for these
subjects and tasks. By day 4 of the simulation, the subjects (and the experi-
menters) were able to successfully complete the sequence of activities,

with times assigned for each task (see Figure 106), The times to complete
grouped tasks are shown in Table 29. Completing tasks within these time
constraints was found to cause excessive fatigue and stress in the subjects..

More personal time was then allotted to the subjects.

Suit donning and doffing time was reduced by performing a '"crew ex-
change' for extravehicular tasks. The crew exchange required each
subject's extravehicular activity to take place at a single location on the
simulated traverse, one subject egressing from the vehicle immediately
after the first subject had ingressed from his outside activity. This pro-
cedure required each subject to don and doff his suit only once a day
instead of twice a day, with a total time saving of about 2 hours.

After several days of trial and error, a functional time line was developed,
the final version being a direct result of the subjects' efforts to include all
tasks in a manner most satisfactory to them (the detailed task sequences
performed on each day are shown in Figure I-17 of Appendix I). The

final LUNEX II time line is shown in Figure 107 (block diagram of this
time line is shown in Figure I-18 of Appendix I.) The times to complete
grouped tasks are shown in Table 30. This time line went into effect on
the 12th day of the simulation and continued successfully thereafter.

Though it was not possible in this simulation to spend extended time

periods performing outside tasks, it became obvious that if more time is
to be spent outside the vehicle this could be accomplished by devoting
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whole days to extravehicular tasks (assuming the pressure suits and

support systems are adequate).. On these days little or no vehicle driving
would occur nor would any inside scientific tasks be performed. Likewise,
to accomplish inside tasks, full days with no extravehicular activities may
be required. This suggests that, by alternating inside and outside tasks by
days, a realistic time line could be generated. It should be noted that house-
keeping and hygiene require a considerable time allotment if undue stress

on the crew is to be prevented.
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SECTION 4
DISCUSSION

The outstanding result of this simulation was that two qualified subjects could
maintain daily performance levels and physical condition for an 18-day simu-
lation with no observable adverse effects or trends that could be attributed to
either the minimal interior free volume of the simulator or to the duration of
time spent in the simulator,

For the task conditions and performance measures of this simulation a work-
space/living area having a 166-centimeter (65. 4-inch) ceiling height and a
volume of 3. 26 cubic meters (115. 3 cubic feet) was found to be adequate for

a full-term lunar surface mission simulation plus a 4-day contingency. Both
the workspace/living area volume and the airlock volume [1. 36 cubic meters
(48 cubic feet) normal, 1.86 cubic meters (65. 9 cubic feet) emergency] were
found satisfactory for two men to simultaneously don and pressurize state-of-
the-art pressure suits.

The general finding that vehicle interior volumes, workspace layouts and
sleeping and comestible provisions were adequate for an 18-day simulation
wherein crew performance was evaluated by physiological and performance
parameters under different pressure suit conditions provides a successful
validation of previous short-term studies performed by Honeywell (Refs. 1,

2, 3, and 4). The one other minimum crew space habitability study for a lunar
mission known to us (Ref. 19) evaluated a volume of 61. 5 cubic feet per man.
The Apollo-capsule-shaped vehicle used in this other study did not provide

an airlock for egress to the lunar surface, nor was the vehicle shape intended

to be particularly suited for lunar surface exploration.
In the present study, the normal vehicle interior free volume of 4. 62 cubic

meters (163. 3 cubic feet) or 2. 31 cubic meters (81. 7 cubic feet) per man
included the airlock, which, though used for hygiene purposes, was generally
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not occupied by the subjects during routine inside tasks. The workspace/
living area of 3. 26 cubic meters (115. 3 cubic feet) provided 1. 63 cubic meters
(57.7 cubic feet) per man. This small functional volume was possible princi-
pally by the lowered ceiling height and by the careful shaping of workspace
and living area geometries. The basic cylindrical shape of the LUNEX II
corresponds to the accepted shape for a lunar surface roving vehicle. Other
studies have examined as many as 1200 vehicle design combinations resulting

in the choice of a basically cylindrical shape (Ref. 11).

The minimum cabin volume for a lunar surface vehicle appears to be set by
emergency conditions which require the use of pressurized suits. The emer-
gency study results indicated that the cabin aisle width and the inner airlock
door need widening to accommodate a crewman in the inflated suit wearing a
backpack. It was clear that a larger inner hatch is required to permit easy
access by subjects wearing inflated suits with the backpack on. More effi-
cient utilization of the hatch space could be achieved if a sliding instead of a
swinging hatch door were used. Repetitive trials and procedure refinement
may result in an acceptable means of operating in a minimum-volume vehicle
during emergency conditions. The negotiating of hatches and aisles is, how-
ever, a persistent problem in the inflated suit condition and has been so rec-

ognized in other studies (e. g., Ref. 20, p. 69).

No remarkable physiological effects were observed during the study with the
exception of the weight loss during the last few days of the simulation. Sev-
eral explanations may be given for the weight loss phenomena. A most likely
explanation can be derived by piecing together diverse occurrences which, in
combination, may have resulted in the loss of weight. At about day 12 of the
simulation, the subjects were following a time line largely of their own design
and were highly motivated to complete all tasks within its constraints. The
time required to eat four meals a day was considered excessive and, with the
relatively light physical workouts during the early phase of the simulation,
they could quite easily discard certain food items without feeling hunger.

Their gradual adaptation to work on the treadmill in the inflated suit condition,
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however, led to increased workload during outside activities since it was the
eéxperimenter's intent to increase the physical effort of the treadmill activity
to exceed if possible the known capacity of the PLSS and thus assure appro-
priate physiological stress during outside task periods considerably shorter
than the 4-hour maximum period (Ref. 21) allotted for an actual mission.
During the last few days of the simulation the subjects were willing to accept
high levels of work during extra-vehicular activities. This high workload
level coincided with their determination to make the time line work, resulting
in food being discarded just when its caloric content was most needed, with
the result that the subjects began taking in less food while expending more
energy per day.

Dehydration did not appear to occur since water excreted in the urine and
feces declined during the latter simulation days while water intake was main-
tained, permitting more water to be lost as perspiration (see Figures 81 and
82) with total water balance being maintained. The weight loss is not believed
due to the stay in the simulator. It is believed that performance as well as phys-
iological disturbances resulted more from anxiety-producing stimuli such as
eémergencies, equipment breakdown, and the accumulation of uncompleted
tasks than from the simulator confinement per se. This observation is in
agreement with the findings of Hanna in an 8-day simulated space vehicle
confinement study wherein selected physiological parameters were monitored
(Ref. 22). Speckman and co-workers found no physiological changes from
pre-test control values during confinement studies 28 days long (Ref. 26).

It should be noted that the LUNEX II simulation was neither an isolation nor
a confinement study in the strict sense of these terms. The subjects were
confined to a schedule as much as to a vehicle since outside activities (within
the confines of a pressurized space suit) were performed with occasional
visual and verbal interaction with the experimenters -- notably during emer-
gency rescue tasks. Ninety-six percent of the subjects’ time, however, was
spent within the confines of the LUNEX II.
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The technique of calibrating each subject's heart rate with his maximum
oxygen capacity (Refs. 24 and 25) provided a relatively simple means whereby
relative task workloads can be assigned (when the task requires the use of
large muscle groups). This approach appears desirable for simulation studies
where the number of subjects is usually small and heart rates may be moni-
tored. The consideration of heart rate and respiratory rates as a percentage
of maximum steady-state values eliminates dependence on large numbers of
subjects to allow for inter-subject variations (Ref. 1). The P/Pc values ob-
tained for the two subjects during this simulation were found to be comparable
to those values for other subjects performing the same or similar tasks in a

previous Honeywell study (Refs. 1 and 4).

Further studies in the areas of emergencies and optimizing food consumption
times are recommended. In addition, it would be highly desirable to adapt
the low cabin interior volumes and their workspace layouts to actual system
hardware as these hardware systems become defined for lunar surface vehi-

cles.

This study has demonstrated that careful workspace layouts can make a small
vehicle volume habitable and functional using the tasks simulated. The results
obtained can be used in the definition of operational workspace and stowage

areas for the use and stowage of actual mission hardware.
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SECTION 5
CONCLUSIONS

Each of the task result sections present specific conclusions which will not

be listed here. Instead a summary of the major general results are

presented.

1.

A lunar surface vehicle with a cabin free volume of 3. 26 cubic meters
(115, 3 cubic feet), a nominal airlock volume of 1.36 cubic meters

(48 cubic feet), and a ceiling height of 166 centimeters (65.4 inches)
is adequate to house two men (47 to 93 percentile with respect to

height) performing simulated lunar surface mission tasks for 18 days.

Simulated driving, monitoring, navigating, sample measurement and
audio balancing tasks could be performed throughout the simulation
with satisfactory accuracy and no adverse trends. No unusual
differences between the two subjects' performance levels were ob-

served,

Realistic geophysical tasks could be successfully performed in the

simulator by subjects relatively untrained in geology.
Performance during emergencies indicated that:

® Power assistance is required for the rescue of a simulated totally

disabled crew member.

® Emergency procedures are critical to mission success. Further
study of the emergency procedures and techniques is recommended.

® An airlock having a volume of 1.86 cubic meters (65.9 cubic feet)
and a ceiling height of 166 centimeters (65.4 inches) will adequately

12504-ITR2



5o

- 58 -

contain two operators in inflated pressure suits, one operator being
totally immobilized. Furthermore, an airlock of these dimensions
permits two crew members to simultaneously don pressure suits
and backpacks and inflate their Apollo state-of-the-art pressure

suits,

® The cabin volume, driving station volumes, and chair locations
were adequate for operating in the inflated pressure suit condition
using the cabin air supply system. Performance of the driving and

monitoring tasks while wearing suits deteriorated.

e A 55,8Dby 127-centimeter (22 x 50-inch) inner hatch space could not

accommodate subjects wearing pressurized suits and backpacks.

® A single crew member could successfully perform simulated tasks
within the minimum cabin volume for at least 7 hours even if one

crew member was temporarily disabled.

A diet yielding the caloric equivalent of approximately 3000 calories
per day provided sufficient nutrient for the performance of the simu-

lation tasks.

The urine analyses showed no abnormal deviations with respect to
pH, glucose, ketones, proteins, 17-hydroxy corticosterone and the
17-ketosteroids during the 18 day simulation,

The physical fitness of the subjects was unchanged by the simulation
as determined by pre- and post-simulation maximal oxygen con-
sumption measurements taken during treadmill runs. This result
indicated that the daily exercise during extravehicular treadmill walks
maintained fitness over an 18-day period without a scheduled in-
cabin exercise program. Extravehicular exercise consisted of one-
third. to one-half - mile walks at speeds from 1 to 2.6 miles per hour
while wearing pressure suits inflated to 3.5 pounds per square inch
above atmospheric.
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Oxygen consumption estimated during treadmill walks on 4 percent
grades up to 2.6 miles per hour while wearing inflated pressure suits
exceeds the rated capacity of the PLSS, indicating that extravehicular
activity is limited by system constraints rather than operator .capabil-

ities. .

Heart and respiratory rates, treated as a percent of steady-state
maximums attained during fatiguing work, clearly distinguish between

tasks requiring large or small muscle group activities.

Task time-line analyses suggest that, in order to increase the time
available for inside scientific tasks, no more than three meals a day
should be required. Time is also saved if subjects simultaneously
don and doff pressure suits and exchange inside-and -outside vehicle

tasks.

It is recommended that extravehicular tasks be alternated by day

with inside tasks to permit maximum task performance efficiency.
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Table 2., Cabin Illumination

Area

Work station behind driver
Center pullout work station
Audio balance work station
Work station behind monitor
Water closet

Flow meter light in airlock
Seat in airlock

Driver's station workboard
Driver's station panel
Driver's station display scope area
Monitor's station workboard
Monitor's station panel
Monitor's station window area

Intensity desired for driving

Foot Candles

30
16
28
28

1

4
<1
23
15

3
14

10

12504-ITR 2
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Cabin Electrical Controls and Indicators

Work Area

Item

Function

—

Driving

Push to talk toggle switch

Control stick

Dual-beam scope display

Enables subjects to commu-
nicate with test conductors.

Used right and left motions
of the stick to track the
driving task display.

Visible only during driving
task to display parallel

line "road" and tracking dot.

Center Cockpit
Panel

Driver's back and side
light controls

Communications micro-
phone-speaker

Hatchlights
Monitor's back and side
light controls

Cockpit time switch

Cockpit timer light

To adjust intensity of back
and side cockpit lights,

Audio contact with experi-
menters,

Indicate that inner or outer
hatch is open.

To adjust intensity of back
and side cockpit lights.

To turn cockpit clock timer
on or off,

To indicate timer power is on.

Monitoring

Cockpit lights power switch
Push to talk toggle switch
Off course monitor light

Monitor button switch

Helmet communications
jack

3 x 3 light matrix

To turn cockpit lights power
transformer on or off,

Enables subjects to commu-
nicate with test conductors.

Indicates that driver is off
course,

Operates '"Monitor' clock
timer in external equipment
rack,

Provides communications
to operator wearing helmet
inside main cabin area,

Dual-purpose display for
""change-no change' monitor-
ing task and skill retention
task,
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Cabin Electrical Controls and Indicators (Continued)

o
Monitor (cont,)

Work Area |

Item

Function

"Yes'" Button switch
(switch no, 1)

"No'' Button switch
(switch no, 2)

3rd Button switch
(switch no. 3)

To be operated when sur-
veilance task light pattern
changes from previous
pattern,

To be operated when sur-
veilance task light pattern
remains identical to pre-
vious pattern.

To be operated along with
the ''yes' -'""no'"' button switches
as required by the skill
retention task.

Port Work Station

Airldock pump cycle
toggle switch

Pump cycle "on" light

Switch on light fixture

Power outlet on light

Up position initiates 5 minute
"pump up" timer. Down
position initiates 5 minute
"pump down'' timer. Center
position is off,

Indicates that either ''pump
up'' or ""pump down'' cycle
is on,

Operates port duty station
light,

110V power for portable
lights, tools, etc.

Starboard Work
Station

Timer switch

Timer Light

"Power on'' switch

Red light

""Headphones on'" switch
""Headphones'" jack

Toggle switch on communi-

cations box
Switch on light fixture (2)

To turn work station clock
timer on or off,

Indicates timer power is on.

Power switch for audio
balancing generator.

Indicates generator power
is on,

Initiates audio balancing
task and task clock timer,

Headphone connection for
audio balancing task.

Push to talk switch for use
in center cabin work area,

Operate starboard duty sta-
tion lights.
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Table 3. Cabin Electrical Controls and Indicators ( Concluded)

Work Area

Item

Function

Starboard Work
Station (cont. )

Pitch axis meter

Pitch axis thumb wheel

Yaw axis meter

Yaw axis thumb wheel

—_—
Pitch axis gimbal position
indicator.
Pitch axis gimbal position
adjustment,
Yaw axis gimbal position
indicator
Yaw axis gimbal position
adjustment,

Airlock

Airlock pump cycle switch

Pump cycle '"on'" light

Airlock light on switch

Airflow indicator light on
switch

Up position initiates 5
minute "pump up" timer,
Center position is off.
Indicates that either "pump
up'" or "pump down' cycle
is on.

Main airlock light power
switch,

Airflow indicator light
power switch,
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Table 4, Physical Dimensions of LUNEX II Subjects
(Pre-Simulation)
Operator 1 Operator 2
Age: 38 Age: 34
Parameter Metric | British cf:::i-le Metric |{British c]:;:eenr';i—le
175 cm | 69,0 in, 47 185 cm (72,9 in, 93
75,8 kg | 167,0 1b 60 88.8 kg {195.8 1b 92
Sitting Height 89,4 cm| 35.2 in, 28 95,7 cm|37,6 in. 91
Waist Circumference 80,7 cm| 31,8 in. 51 90,2 cm|35.5 in. 86
Chest Circumference 96,5 cm| 38,0 in, 39 109 cm |43.0 in, 94
Biceps Circumference 34,3 cm| 13,5 in, 75 35,9 cm|14.1 in, 90
Forearm Circumference| 30,5 cm| 12,0 in, 75 30,8 cm|l12,.1 in, 80
Calf Circumference 38,1 cm]| 15.0 in, 73 40,6 cm|16,0 in, 95
Thigh Circumference 57.3 cm| 22,6 in, 54 61,3 cm|24,1 in, 83
Arm Length 88,0 cm| 34,6 in. 51 89,5 cm}35. 3 in, 65
Functional Arm Length | 80,6 cm| 31,8 in. 36 85.1 cm|33.5 in, 71

(The measurements and percentile ratings were taken in
accordance with Reference 5)
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Table 5. Relationship of Driving Task Error
to Navigation Task Map Location

Driving Task Integrated Error (e)
(In mm displacement of recorder
traces)

Location on Navigation Map

O<e <12

12<e < 20

20 < e < 45

No error, placed directly on
traverse

Medium error, placed inter-
mediate distance off traverse

Maximum error, placed maximum
distance off traverse
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Table 7, Data Summary Sheet -- Change/No-Change Monitoring Task

Operator 1
Trial Correct Incorrect INo, of Pre- d. %
Number Responses : Responses |_sentationg 1 Right* M_
1 365 23 417 87 5.5
3 397 43 459 86 9.4
5 423 29 455 93 6.4
7 348 26 391 89 6.7
10 430 31 472 91 6.6
12 451 32 488 92 6.6
14 428 26 460 93 5.7
16 352 23 399 87 5.7
18 473 28 519 91 5.4
20 490 21 519 93 4,1
23 522 38 569 92 6,7
25 422 27 458 92 5.6
27 444 22 469 95 4,7
29 412 9 424 98 2.0
(_)Berator 2
Trial Correct Incorrect No. of Pre- 4 9
Number Responses Responses .| sentations | Right*| Wrong*
2 400 44 468 86 9.4
4 430 18 466 92 3.9
6 437 10 466 94 2.1
8 502 17 945 92 3.1
9 451 11 481 94 2.3
11 481 27 535 90 5.1
13 416 12 456 91 2.3
15 467 33 935 817 6.2
17 494 14 524 94 : 2,7
19 435 15 4617 93 3.2
21 513 14 555 93 2.5
22 529 25 5966 94 4.4
24 412 36 452 91 8.0
26 483 11 504 96 2,2
28 509 4 448 114 0.9
30 451 13 470 96 2,9

“The percent right is independent of the percent wrong since, during each 1. 5~
second presentation of a 40-minute trial, the subjects could make no response,
one response either correct or incorrect, or several responses correct or
incorrect.
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Table 9. Rock Sample Evaluation

Rock Category Grade
——— ———————— |
1 Four right, one wrong - belonged in category 2
(close)
2 Three right, two wrong - one belonged in category
8, one belonged in cate-
gory 5
3 All correct
4 Eleven right, one wrong - was identical to rock
already placed in cate-
gory 5
5 All correct
6 All correct
7 Near miss (no rocks of this category were included)
8 All correct
Summary:

Only one bad error - in category 2.

Two moderate errors of placing the same rock (a vesicular basalt in
categories 2 and 4 as well as in the proper category 5.)

Evaluation:

Very good to excellent,
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Table 10. Results of Mineral Points Count Derived from the Subjects' Data
Percentage of Mineral in Each Size Range by Number
Mesh Size
Mineral
A (large) B (medium) C (small) Totals
Quartz 2 5 64 71
Pyrite 3 5 6 14
Pyroxine 2 5 8 15
Totals 7 15 78 100
Actual Percentages Predetermined by Weight
) Mesh Size
Mineral
A (large) B(medium) C (small) Totals
Quartz 5 10 30 45
Pyrite 20 10 5 35
Pyroxine 5 10 5 20
Totals 30 30 40 100%

Evaluation: Good
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Table 14, Feces Weights - Operator 1

Total Stool (18 Days) 2584.5 gm |
Wet Matter 2001, 2 gm
Dry Matter 583.3 gm
Average Daily Stool 107.6 gm
Average Daily Wet Matter 83.4 gm
Average Daily Dry Matter 24,3 gm
Average ¢ Wet Matter 7. 4%

Totals Omitting First and Last 1/2 Days (17 Days)

Total Stool 2446, 3 gm
Wet Matter 1898.1 gm
Dry Matter 548,2 gm

Average Daily Stool 143,9 gm

Average Daily Wet Matter 111,7 gm

Average Daily Dry Matter 32,3 gm

Average ¢ Wet Matter 77.5%
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Table 15,
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Feces Weights - Operator 2

Total Stool (18 Days)
Wet Matter (total)
Dry Matter (total)

Average Daily Stool

Average Daily Wet Matter
Average Daily Dry Matter

Average ¢ Wet Matter

2222,4 gm
1696, 8 gm
925,6 gm
101,0 gm
77,1 gm
23.9 gm

76. 34

Totals Omitting First and Last 1/2 Days (17 Days)

Total Stool
Wet Matter
Dry Matter

Average Daily Stool

Average Daily Wet Matter
Average Daily Dry Matter

Average 4 Wet Matter

2055.1 gm
1575,5 gm
479,6 gm
120.9 gm
92,7 gm

28,2 gm
76, 6%
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Table 16, Urine Analysis of 17-Keto and Hydroxy
Steroids - Operator 1

Full Simulation Day Urine Vol 17-Keto 17-OH Cort
L
0 654 ml/12 hr. 9.3 mg/12 hr. 7.6 mg/12 hr.
18.6 mg/24 hr.x | 15.2 mg/24 hr.*

3 2178 ml/24 hr. 14.4 mg/24 hr. 10.1 mg/24 hr.

6 1080 ml/24 hr. 11.9 mg/24 hr. 9.9 mg/24 hr.

10 1778 ml/24 hr. 16. 5 mg/24 hr. 15. 5 mg/24 hr.

13 1631 ml/24 hr. 12.8 mg/24 hr. Lab accident

15 2474 ml/24 hr. | 10.5 mg/24 hr. 18. 2 mg/24 hr.

17 960 ml/24 hr. 13.3 mg/24 hr. 12.1 mg/24 hr.
Average 14.0 mg/24 hr. 13. 5 mg/24 hr.

Average excluding first day 13.2 mg/24 hr. 13. 2 mg/24 hr.

“Extrapolated to 24 hours

12504-ITR2




- 85 -

Table 17,

Urine Analysis of 17-Keto and Hydroxy
Steroids - Operator 2

17-Keto

17-OH Cort

16.7 mg/12 hr.

33.4 mg/24 hr.*

20.4 mg/24 hr.
16. 6 mg/24 hr.
17.9 mg/24 hr.
18.3 mg/24 hr.
17.4 mg/24 hr.

19.1 mg/24 hr.

9.8 mg/12 hr.
19.6 mg/24 hr.

14.2 mg/24 hr.
12. 6 mg/24 hr.

9.5 mg/24 hr.

Lab accident

9.7 mg/24 hr.
9.7 mg/24 hr.

3

20, 4 mg/24 hr.

12.6 mg/24 hr.

Full Simulation Day Urine Vol

0 743 m1/12 hr.

3 842 m1/24 hr.

6 877 ml1/24 hr.

10 987 m1/24 hr.

13 1036 m1/24 hr.

15 932 ml1/24 hr.

17 808 m1/24 hr.
Average
Average Excluding 1st day

18. 3 mg/24 hr.,

11.1 mg/24 hr.

* Extrapolated to 24 hours.

’*— TN Wy 9wy O eeew  weemw -—we—w
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Table 18, Urinalysis - Operator 1
Simulation Day Protein Glucose pI_I Ketones Comment
0 - - 6.0 -
1 - - 6.0 -
2 - - 6.0 -
3 - - 6.5 -
4 Trace - 7.0 -
5 - - 6.5 -
6 - - 6.0 -
7 Trace - 6.5 -
8 - - 6.0 - Much mucus
9 - - 7.0 -

10 Trace - 6.5 -

11 Trace - 6.0 -

12 - - 6.5 -

13 Trace - 7.0 -

14 - - 6.0 -

15 - - 6.5 -

16 Trace - 6.0 - Much amorphous
material; Ca-Ox
crystals

17 Trace - 6.0 - Much amorphous
material; Ca-Ox
crystals
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Table 19. Urinalysis - Operator 2

H

e . AR e

Simulation Day Protein Glucose P Ketones Comment
0 - - 5.0 -
1 - - . -
2 Trace - . -
3 - - . -
4 Trace - . -
5 Trace - . -
6 Trace - . -
7 Trace - . - Sedimentation
8 Trace - . - Much amorphous
material
9 Trace - . - Much mucus
10 - - .0 -
11 Trace - .0 -
12 Trace - .0 -
13 - - . -
14 - - . -
15 Trace - . -
16 Trace - . - Much amorphous
material; many
Ca-Ox crystals
17 Trace - 6.0 - Much amorphous

material; many
Ca-Ox crystals
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Table 20. Work Capacity Determinations Before and After the LUNEX II

Simulation
Submaximal Work* Maximal Workx*
Subject Pulse Rate O2 Consumption | Pulse Rate 02 Consumption

(cc/kg/min) (cc/kg/min)

Ty | T2 T, | Ty Ty | T T 2
Operator 1

135 138 26,6 | 26.6 175 -—- 36.8 36. 2
Operator 2| 143 | 163* 26.0 | 30, 6% 183 181 37.2 37.1

* Submaximal Work -- 10 minute walk, 10% grade, (3 mph) 4.8 kmph
%* .
* Maximal Work -- 2:45 minute run, 6% grade, (6 mph) 9. 6 kmph

T, : pre-simulation

1
Ty post simulation

*  Operator 2 performed a 15 minute walk
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Table 25. Heart and Respiratory Rates Per Task As The Ratio Of The
Observed Value, P, To That Obtained During Maximal Work (PC)
Operator 1 Operator 2
eart Rate| Respiration | Heart Rate|Respiration
TASK Pc = 175 | Rate PC = 47 Pc = 182 Rate PC - 34
Audio Ba]_ancing 0.410 0. 344 0.416 0.468
Driving 0,437 0.318 0,416 0.450
Eating 0.432 0.311 0.424 0.438
Monitoring 0.426 0. 321 0.426 0,426
Sample Measurement 0.426 0. 360 0.430 0. 426
Navigation 0.460 0.332 0.461 0.523
Suit Donning 0.625 0.592 0.630 0. 780
Suit Doffing 0.578 0.556 0.620 0. 788
Treadmill, pressurized 0,850 0, 680 0.850 1.00
walk, (2.6 mph) peak, 10 min.
(4. 15 kmph)
Treadmill, shirt sleeves 0.780 --- 0.787 ---
walk, (3 mph), 10 min.
(4. 8 kmph)
Treadmill, shirt sleeves 1.00 1,00 1.00 1.00
run, (6 mph), 2:45 min.
(9. 6 kmph)
Treadmill, pressurized 0.97 0.85 1.01 1.15
l run, (5 mph), 1 min,
| (8.0 kmph)
|
t 12504-ITR2
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Table 26, Vehicle Cabin Habitability Ratings

Period Evaluated Numerical Rating*
Operator 1 Operator 2
3 days 5 6
7 days 5 6
14 days 6 6

*See Figure 35 for numerical rating identification
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Table 27, Food Item Evaluation

19
20
21
22
23
24
25
26

27
28
29

Chicken a la King

Banana Pudding

Orange Juice

Fruit Bar

Hash

Chocolate Pudding
Graham Cracker Bites

Lemon Drink

Beef Stew

Wheat Flakes
Scrambled Eggs
Cinnamon Toast
Cream of Potato Soup
Sugar Cooky Bites
Barbequed Beef
Lemon Pudding

Fruit Bar

Ground Beef with Rice
Butterscotch Pudding
Bacon and Toast Bites
Beef Pieces with Gravy
Cherry Drink

Grape Drink
Beef Barley Soup

Chicken Pieces and
Gravy

Oat Cereal

Pork with Gravy

Beef Stroganoff

Turkey Pieces and Gravy

Rice Krispies

Too bland. Needs

Tastes like
cardboard

No, Food Item Qperator 1 Operator 2

1 Corn Flakes Not bad

2 Coffee Good Not bad

3 Bacon and Eggs Good Rough to get down
4 Tomato Cocktail Good

5

Not bad
Not bad

Not bad

Not bad

Not bad

Not bad

Excellent

Not bad
Not bad

Not good for
breakfast

Not bad
Not bad
Not bad

Lousy

Tastes like
cardboard

|
I
|
!
|
8
9
10
11
12
1
14
15
16
17
18
|
|
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Table 28. Subjective Rank Ordering of Tasks According to Preference

Rank order (best to worst)

Task Operator 1 Operator 2 di di2
1, Navigation 1 1 0 0
2. Geophysical 2 2 -0 0
3. Pattern Recognition 3 4 +1 1
4. Driving 4 5 +1 1
5, Audio Balancing 5 6 +1 1
6. Sample Measurement 6 3 -3 9
7. Monitoring 7 7 0 0
Totals 0 12
6(Z di)
Rank Correlation Coefficient: r, = 1 - ——5
N(N“ - 1)
r, = 0.82 significant at 5 percent level,

12504-ITR2




T W W

- 97 -

Table 29, Early LUNEX II Task Completion Times

Task Group Approximate time to complete
(hrs:min)
1. Personal time, hygiene, and housekeeping 1:30
tasks
2. Eating and associated cleanup 2:55
3. Driving tasks 2:00
4. Extravehicular tasks 1:00
9. Inside scientific tasks (including navigation 4:25
and charting)
6. Suit donning and doffing (including airlock 3:40
pump up and pump down)
7. Buffer time period :30
8. Sleeping 8:00
Total 24:00
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Table 30. Final LUNEX II Task Completion Times

Task Group Approximate time to complete
(hrs:min)
1. Personal time, hygiene and housekeeping 4:05
tasks
2. Eating and associated cleanup 3:00
3. Driving tasks 2:00
4, Extravehicular tasks 1:10
5. Inside scientific tasks (including navigation 3:40
and charting)
6. Suit donning and doffing (including airlock 1:35
pump up and pump down and crew exchange)
7. Buffer time period :30
8. Sleeping 8:00
Total 24:00
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@ UNITED STATES

LUNEX Y

Figure 1. Side View of LUNEX II Showing TV Monitor and Task Time Rack
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Front View of LUNEX II

Figure 2.
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le«——— 20.0 ——b‘ 4.0 l@—13.75 4-]

Ay/Ay ANDA, CONSTITUTED
THE FLOOR AREA OF THE

16.25
Al 9.0 AZ A3
24.06 — P
DRIVING STATION-
LEGEND:
A, =325.0 IN? (2095 cmd) 68.75
A,=228.4 1N (1482 cCMD) Ag

A =325.0 IN2 (2095 CM2)
Ay =16541N2 (10,690 CM?)
Ag=1292IN% (8348 CMD)
TOTAL = 3824 IN.2
OR 26.6 FT° (2.47 M?)

A
AIRLOCK

34.0

l@m—— 38.0

Figure 4, LUNEX II Floor Area
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VOLUME VOLUME
VOLUME ELEMENT CUBIC FEET CUBIC METERS
1 (LUNEX D 303.6 8.52
il VEHICLE SYSTEM 57.2 1.62
EQUIPMENT AND
TOTAL 3929 11.05

Figure 5. Volume Available in a Cylindrical Vehicle of

the Type Simulated
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Figure 6. LUNEX II Driving Station (the center-aisle breadboard is
extended with the subjects' navigation map in view)
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Figure 7.
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LUNEX II Driving Area
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Figure 8.
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. icht matrix V.Vl .
ing the nine-light onitoring

itoring Area (showing the 's off-time m
LUNEX II Momtorl;lgse buttons, the drl‘liesrwsitch and the four
it HES0E LA I‘espbutton a push-to-tal tion 1igi1ts; the arm
light and response ulating the driving s;cla monitor's chair is in
potentiomete%“ts. I;goard are extended; the
rests and writing
its forward position)
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Figure 9.

(@]
(o)

LUNEX II Work Station (showing the pass box, Gimbal Position
Indicator, and audio-balancing work area; the clips were used to
hold food bags during rehydration)
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Figure 10.
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LUNEX II Work Station (showing the microscope storage and
work area directly behind the driver's chair)
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Figure 11,

- 41l -

View from LUNEX II Airlock (showing center stowable work-
space board partially extended for a microscope task; the
driver's chair has been pivoted for use in the workspace area)
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Figure 12. Center- Aisle Seat in an Extended Position
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Figure 13.

Sleeping Quarters (normal sleeping arrangement with
upper bunk fully extended - as viewed from airlock)
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Figure 14. Airlock Viewed Through Outer Hatch
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Figure 15. Airlock Viewed from Top - Both Hatches Secured
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Figure 16. Toilet Facilities (view 'a' shows toilet extended into airlock;
small holes contain urine bottles; view 'b' shows toilet in
partly withdrawn position; further withdrawal permitted

experimenters to collect urine and fecal samples)
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Day No. 1

Dry Wt. Water Needed . Protein Fat

Meal No. 1

e o (gms) (ml) Calorie (gms) (gms)

Corn Flakes 30 175 220 4, 55 7.0

Coffee 2 220 5

Bacon and Eggs 50 75 310 17.6 23.85

Tomato Cocktail 33 204 70 2.4 .46
Total 135 674 605 24,55 31,31

Meal No, 2

Chicken ala King 50 150 233 22,72 11.82

Banana Pudding 45 90 198 .65 9. 35

Orange Juice 50 177 187 1.22 . 30

Coffee 2 220 5

Fruit Bar 42.6 180 3.10 12,40
Total 189.6 637 803 27.69 29,87

Meal No. 3

Hash 50 220 225 8.9 8.4

Coffee 2 220 5

Chocolate Pudding 60 120 265 2.2 6.65

Graham Cracker Bites’ 50 220 4, 55 9. 40
Total 162 560 715 15,65 24, 45

Meal No. 4

Lemon Drink 40 240 154

Beef Stew 100 300 483 27.76 27.18
Total 140 540 637 27,16 27,18

Figure 17. LUNEX II Simulator Menu (5-day 20-meal
cycle - approximately 2800 calories per
day)*

*The calorie content of the diet was estimated by the Pillsbu.r}f Company
according to the U.S. Agricultural Handbook on the composition of foods
(Ref. 32),

12504-ITR2
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Day No. 2
Dry Wt. Water Needed . Protein Fat
Meal e- 1 (gms) (m1) Calories  (gms)  (gms)
Wheat Flakes 50 175 220 5. 25 7.25
Coffee 2 220 5
Scrambled Eggs 50 100 297 19.9 21.33
Orange Juice 50 177 187 1.22 . 30
Cinnamon Toast 20 85 2.14 1.76
Total 172 562 794 28.51 30. 64
Meal No, 2
Lemon Drink 40 240 154
Cream of Potato Soup 50 210 225 8.9 . 9.25
Sugar Cookie Bites 50 240 4, 65 10, 65
Total 140 450 619 13.55 19. 90
Meal No., 3
Coffee 2 220 5
Barbecued Beef 50 132 287 14.2 20. 85
Lemon Pudding 50 50 198 10.1 5.3
Fruit Bar 42,6 180 3.1 12,4
Total 144.6 402 670 27. 38. 55
Meal No, 4
Ground Beef w/Rice 50 100 296 15.4 21,175
Coffee 2 220 5
Butterscotch Pudding 45 90 198 . 65 5.35
Sugar Cookie Bites 50 239 4,65 10. 65
Total 147 410 738 20. 7 37.75
Figure 17, LUNEX II Simulator Menu (continued)

(5-day 20-meal cycle - approximately

2800 calories per day)

12504-1ITR2Z
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Meal No. 1

Corn Flakes
Orange Juice
Bacon and Toast Bites

Total

Meal No, 2

Beef Pieces w/Gravy
Coffee

Cherry Drink

Banana Pudding

Total

Meal No. 3

Grape Drink

Beef Barley Soup
Graham Cracker Bites
Cinnamon Toast

Total

Meal No. 4

Chicken Pieces in Gravy

Tomato Cocktail
Lemon Drink
Cinnamon Toast
Fruit Bar

Total

Day No. 3
Dry Wt. Water Needed . Protein Fat
(gms) (ml) Calories (gms) (gms)
50 175 220 4, 55 7.00
50 177 187 1.22 . 30
50 225 8.20 14. 45
150 352 632 13.97 21.75
75 110 372 34, 32 16.19
2 220 5
40 210 154
45 90 198 . 65 9. 39
162 630 729 34, 97 21,54
40 240 154
50 275 196 8.18 8.06
50 220 4,55 9. 40
20 85 2. 14 1.76
160 515 655 14. 87 19, 92
50 75 261 23. 69 13.98
23 204 70 2.40 . 46
40 240 154
20 85 2.14 1.76
42,6 180 3.10 12,40
175.6 519 750 31.33 28.6

Figure 17,

LUNEX II Simulator Menu (continued)
(5-day 20-meal cycle - approximately
2800 calories per day)
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\
| Day No. 4
Dry Wt. Water Needed . Protein Fat
.1
Meal No (ems) (m1) Calories (gms) (gms)
Oat Cereal 50 175 220 6.1 8.7
Cherry Drink 40 240 154
Orange Juice 50 177 187 1,22 .3
Cinnamon Toast 20 85 2,14 1,76
Total 160 592 646 9. 46 10,76
Meal No, 2
Coffee 2 220 5
Pork w/Gravy 50 75 272 38. 66 33. 82
Lemon Pudding 50 50 198 10.10 5. 30
Fruit Bar 42.6 180 3.10 12, 40
Total 144, 6 345 655 51, 86 51,52
Meal No. 3
Coffee 2 220 5
Beef Stroganoff 75 200 425 19. 35 30.15
Tomato Cocktail 23 204 70 2.4 . 46
Sugar Cookie Bites 50 239 4.65 10. 65
Total 150 624 739 26. 4 41,26
Meal No, 4
Turkey Pieces and Gravy 75 115 390 35.53 20. 97
Coffee 2 220 5
Lemon Drink 40 210 154
Chocolate Pudding 60 120 265 2.2 6.65
Total 177 665 814 37.73 27.62

Figure 17. LUNEX II Simulator Menu (Concluded)
(5-day 20-meal cycle - approximately
2800 calories per day)
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Day No. 5
Dry Wt. Water Needed . Protein Fat
Meal No. 1 (gms) (ml) Calories (gms) (gms)
Rice Krispies 50 175 225 4,00 7.00
Coffee 2 220 5
Bacon and Eggs 50 75 310 17.6 23.85
Tomato Cocktail 23 204 70 2.4 . 46
Total 125 674 610 24, 31,31
Meal No. 2
Grape Drink 40 240 154
Cream of Potato Soup 50 210 225 8.90 9.25
Fruit Bar 42,6 180 3.10 12, 46
Sugar Cookie Bites 50 240 4, 65 10, 65
Total 182.6 450 799 16.65 32. 36
Meal No, 3
Chicken Pieces in Gravy 50 75 261 23.69 13.98
Coffee 2 220 5
Lemon Drink 40 240 154
Lemon Pudding 50 50 198 10.1 5.3
Cinnamon Toast 20 85 2.14 1.76
Total 162 585 703 35.93 21.04
Meal No. 4
Beef Pieces and Gravy 75 110 372 34, 32 16.19
Orange Juice 50 177 187 1.22 .30
Coffee 2 220 5
Butterscotch Pudding 45 90 ‘198 . 65 9. 35
Total 172 597 762 36.19 21. 84
Figure 17, LUNEX II Simulator Menu (Concluded)

(5 day 20 meal cycle - approximately

2800 calories per day)
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Figure 18. Normal Food Preparation Positions (subject on left is putting
a measured amount of water in a food container; center-aisle

workspace board is extended)
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Figure 19.

Experimenters' Task Equipment Stations
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Figure 20. Typical View Through Television Monitor (subjects are in
vented-suit condition following extravehicular activity)
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ivity

Extravehicular Treadmill Act

Figure 21,
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SIN GEN —()—{ cHB: Y-axts
SIN GEN 1 ELEC. SW
A
1 OUT o CHB: Y-AXIS
SIN GEN 16 ©B
SIN GEN 1
REC 2 VTVM
10 \
10 7
A
B 6V
ROLL AXI
G\RoLL AXIS CHA: X-AXIS
REC 3
CROSS
DIODES
Figure 23.

Driving Task Schematic
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GENERATED
FREQUENCY)

PROBLEM
(SLOwW

INTEGRATED

STICK
OUTPUT
ERROR

Recorded Output of the Slow-Frequency Driving Problem

Figure 24.
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PROBLEM : ;
GENERATED THH
(FAST FREQUENCY) P
STICK iy
OUTPUT E
” FaSs 3 £2 EEEman e niEn 3 i
=t == i
i : |
i ' i i\
i : |
INTEGRATED ==
ERROR =

Figure 25. Recorded Output of the Fast- Frequency Driving Problem
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Figure 27,

Navigation Task (large scribed disc with triangular "lunar
mountains'' on its rim is shown with the periscope in position
for navigation sighting)
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FREQUENCY
COUNTER

(<] fs

SQUARE
SINC  wave
o GEN.

FREQUENCY
COUNTER

-0

T HEADPHONES
E ON

s

SYNC L o
oux GEN.

O—

-0

28v
CLOCK —

TIMER

Figure 28. Audio- Balancing Task Schematic
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Figure 29.
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Rock Samples Collected During Extravehicular Activities
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Figure 30. Rock Analysis Equipment
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Figure 31. Binocular Microscope and Mineral Grains Used in
Geophysical Point Count Task
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Figure 32. Polarizing Microscope and Petrographic Slides
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ROCK SAMPLE ANALYSIS

From the samples outside the ship recover 20 by
inspection and take these into the ship for final
testing,
The rock samples must be classified with the aid of the accompanying table
Materials: Twenty samples

Instruments: Hand lens, streak plate, acid bottle, knife, magnet

Problem: Collect (i.e., retain) as many categories of rocks as possible but
not two from any category.

Rock Chart
1. Granite 2. Rhyolite
coarse grained, light colored, light colored, fine-grained
contains quartz equivalent of Granite, may
N.R,.* have some large quartz grains,
N.R.*
3. Obsidian 4, Gabbro
volcanic glass, dark colored, coarse grained, dark colored,
white streak, knife will not may contain magnetite
scratch, N.R.*
N.R.*
5. Basalt 6. Sulfide
dark colored, fine grained, brass yellow or steel gray
equivalent of Gabbro metallic minerals in rock
N.R.* matrix, non-magnetic gray
to blackish streak
N.R.*
7. Iron Meteorite 8. Carbonate
magnetic, black metallic metal, easily scratched with knife,
may have pitted surface, soluble effervesces with HC1
in HC1

*N.R.: no reaction with acid

Figure 33. Rock Sample Analysis Instructions (task provided by
Dr. G. Rapp, University of Minnesota Geophysics
Department)
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MINERAL POINT COUNT TASK

To determine the percentages of three minerals in each of three size ranges by
point counting with a binocular microscope. One unsorted sample contains all
size ranges.

Materials: Quartz, a transparent white angular glossy mineral; Pyrite, a
bragss-yellow opaque mineral; Pyroxene, a greenish black glossy
mineral,

Size ranges a 42-60 mesh
b: 100-115 mesh
c: 150-200 mesh

Instrument: Binocular microscope

Problem: Determine the percentage of each mineral in each size range

a b c
quartz
pyrite
pyroxene
100% 100% 100%

Figure 34, Mineral Point Count Task Instructions (task provided by
Dr. G. Rapp, University of Minnesota Geophysics Department)
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PETROGRAPHIC SLIDE ANALYSIS

Sampling judgment to determine how many distinctly different rock types are included in the given
samples and therefore how many different samples should be collected to give adequate coverage.
The samples are represented by mounted mineral grains, The single criterion for separation
into rock types will be on the basis of mineral content,

Materials: 10 petrographic slide mounts of grains,

. . n . * Y Y s 0k . Iy . S -
These 10 slides will contain an isotropic mineral, an anisotropic mineral, an anisotropic mineral,

and

n opague mineral in varying proportions.

o

Instrument: Petrographic microscope

Problem: Determine how many different rock samples you would collect from the samples (slides) given,
The number is obviously between 1 and 10 with no "absolute' answer.

Slide No, Collect Sample Do Not Collect: Similar to Slide No.:

10

An isotropic mineral transmits light with equal velocity in all directions thereby remaining dark
and colorless under crossed nicols in a petrographic microscope,

An anisotropic mineral breaks light into more than one wave and transmits each with a different
velocity resulting in interference colors under crossed nicols in a petrographic microscope.

Figure 35. Petrographic Slide Analysis Instructions (task pro-
vided by Dr. G. Rapp, University of Minnesota
Geophysics Department)
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Figure 36. The Seven Pairs of Light Patterns and the
Correct Response for Each
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Pattern Operator 1 Operator 2
1X 13 5
1Y 10
2X 3 3
2Y
3X 3 15
3Y 2 13
4X 12
4Y 12
5X 3 12
5Y 5 8
6X 2 2
6Y
X 13 13
Y 13 14

Figure 37. Total Number of Presentations.of
Each Pattern to Each Operator
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Type of Run: 14- to 21-day simulation Subject
Time

Date

Duty Station: I, II, III, IV, V

Suit Condition: Shirt Sleeve
Ventilated Suit
Pressurized Suit

Task Tested

ADJECTIVE NUMERICAL
RATING ‘ RATING DESCRIPTION

z
:3 8 Satisfactory 8 Excellent, includes optimum
Sa 7 Good, pleasant to operate
ool 6 Satisfactory, but with some
% E mildly unpleasant

o) characteristics
S % Unsatisfactory 5 Acceptable, but with unplea-
Z = sant characteristics
82 4 Unacceptable for normal
oy operation
HA 3 Acceptable for emergency
E] ?5 condition only

Z Unacceptable 2 Unacceptable even for

9 emergency condition
O: 1 Unacceptable - intolerable
Z 0 0 Unacceptable - dangerous

&=

B

o}

Comments, if any:

Figure 38, Modified Cooper Evaluation
Form
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OPERATOR 1'S HEART RATE RECORDED THROUGHT A HI GAIN
FAST TIME CONSTANT (0.03 SEC.) PREAMPLIFIER

OPERATORS 1S RESPIRATORY RATE

OPERATOR 1’S HEART RATE AS RECORDED VIA A CARDIOTACHOMETER

|
I

W\\\ I
MWHHHH

k
p——

i

1l H\munu\um i MW

OPERATOR 2'S HEART RATE

WAVE FORM OF BASE LINE YIELDS OPERATOR 2’s RESPIRATORY RATE-
RECORDED THROUGHT A CARDIAC PREAMPLIFIER WITH A SLOW TIME
CONSTANT (2.0 SEC.).

TIME
——

Figure 39, Sample Traces of Heart and Respiratory
Rates Recorded During the Experiment

12504- ITR2

=

e

IR

OPERATOR 2'S HEART RATE AS RECORDED VIA A CARDIOTACHOMETER —/



- 144 -

SEQUENCE A

Take down beds
Electrode checkout
Personal hygiene
Eat

Suit checkout

Chart

Drive

Suit Don
Outside

Suit Doff

Eat and hygiene

Scientific tasks*
Geophysical task

Navigate
Monitor

Scientific tasks
Audio balancing
Sample measurement

Suit Don

Inside

Suit Doff

Eat and hygiene

Scientific task
Sample measurement
Audio balancing

Navigate
Drive

Scientific Tasks
Audio balancing

Sample measurement
Eat
Remove electrodes
Hygiene
Set up beds

Retire

SEQUENCE B

Take down beds

Electrode checkout

Personal hygiene

Eat

Scientific tasks
Audio balancing
Sample measurement

Navigate

Monitor

Suit Don

Inside

Suit Doff

Eat and hygiene

Scientific tasks
Sample measurement
Audio balancing

Chart
Drive

Suit checkout

Suit Don
Outside

Suit Doff

Eat and hygiene

Scientific task

Geophysical task

Chart
Monitor

Scientific Tasks
Sample measurement
Audio balancing

Eat

Remove electrodes
Hygiene

Set up beds

Retire

Figure 40, LUNEX II Task Sequence - 24 Hours
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TRACKING OFF TIME AND ERROR

Figure 41.

AVERAGE ERROR £ 5.D

(sec)

PER 5 MINUTE PERIOD

(mm)

(mm)
PER 5 MINUTE PERIOD

100
90

so t

70

60

50 1

40

30 1
20 1

10

100

90 ¢

80

70 1
60 1
50 1
40 {
30 ¢
20 |

10 ¢+
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SPRING REMOVED FROM CCNTROL

+ 3 " : 4 I 4
4 T 1

-+

=
r
-+
-4
-+

Tracking Off- Time and Error - Both Operators, Speeds 1 and 2

Figure 42. Tracking Error - Both Operators, Speed 1
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TRACKING OFF TIME £ S.D
PER 5 MINUTE PERIOD
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100

90 |
80 ¢
70 ;
60
50
40

30

10 §

-+
-

Figure 43. Tracking Error - Both Operators, Speed 2
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90 4
801
701 T
601
50 ¢4
40 ¢+ N
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20} -~ L /s

10 4

DAY

Figure 44. Tracking Off- Time - Both Operators, Speed 1
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Tracking Off- Time - Both Operators, Speed 2

Figure 45,
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(i) (03s)
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12 i4 16 18 20

10

DAY

0

o~

Tracking Off- Time and Error - Operator 1, Speeds 1 and 2

Figure 46.
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90 §
80 ¢{
70 +
60
50 {
40 |
30 ¢
20 |

10

20

Figure 47. Tracking Off- Time and Error - Operator 2, Speeds 1 and 2

AVERAGE ERROR £ S.D

(AS A PERCENT OF ACTUAL OFF COURSE TIME)

100
90 1
80T
70
60
50
40T
307
20

107

Figure 48.

10 12 14 16 18

DAY

Average Percent Monitoring Error - Both Operators,
Speeds 1 and 2
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[
N
o

110

100 ¢
90

70 1 -
60 - \ [ T

50 ¢ \ -

40 {
30 - //\/

20 |} ~—a

(AS A PERCENT OF ACTUAL OFF COURSE TIME)

AVERAGE ERROR £ S.D

10 ¢
J

b
n
3
+
3

DAY

* OPERATOR 2’S DRIVING WAS EXCEPTIONALLY GOOD
ON DAY 18 HENCE HIS OFF COURSE TIME WAS
EXTREMELY SMALL, RESULTING IN A HIGH PERCENTAGE
ERROR FOR OPERATOR 1’S MONITORING~SEE TEXT.

Figure 49. Average Percent Monitoring Error - Operator 1, Speed 1
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Figure 50,

DAY

Average Percent Monitoring Error - Operator 1, Speed 2
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Average Percent Monitoring Error - Operator 2, Speed 2

Figure 52.
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100

I ! | l
AVERAGE OF BOTHOPERATORS
. OVER BOTH SPEEDS

80 | o—o OPERATOR 1, SPEED 1
o—a OPERATOR 2, SPEED 1

60

| — LA\

At (SECONDS)

“\ ~‘\\ /\
20 D T G i T -2 -
\\\\ \,_____~ ,I, \ \_1

>, e —

N — e~ L 1

© T —— ~-°/4/ \o-——"\ J—
0 2 4 6 8 10 12 14 16 18
DAY

Figure 53. Average Monitoring Error (At) versus Days in the Simulator
(At is the difference between the time monitor's switch was
depressed and the time the driver was off-course averaged
per 5-minute driving period)
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% RIGHT* % WRONG *

OPERATOR |.
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* The percent right is independent of the percent wrong since during each 1.5-second presentation, the subject could make no
response, one response either correct or incorrect, or several responses correct or incorrect.

Figure 54. Change-No-Change Pattern
Monitoring Task Results
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SCATTER PLOT--TIME TO CORRECT —
$o RESPONSE VS.
4.2 TIMES PATTERN
. WAS PRESENTED —j
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1.4 e .
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PRESENTATIONS
Figure 57. Scatterplot of Time to Correct Response versus

Times Pattern was Presented
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500 1 \

300 1
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Figure 58. Average Time to Complete Navigation Task - Both Operators
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Figure 59. Average Navigation Charting Error - Both Operators
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TIME {SEC) AND ERROR (CYCLES PER SECOND)

Figure 62.
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Audio- Balancing Task Average Time and Error - Both Operators
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Figure 63. Audio-Balancing Task Average Time and
Standard Deviations - Both Operators
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Figure 64. Audio-Balancing Task Average Error and
Standard Deviations - Both Operators
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Figure 65. Sample Measurement - Average Time to Measure One Disc,
Both Subjects
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Figure 66. Sample Measurement - Average Error Per Disc 1S. D.,
Both Subjects
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Problem introduction: This problem requires a sampling judgement
to determine how many distinctly different rock types are included in the
given samples and therefore how many different samples should be
collected to give adequate coverage. The samples are represented by
mounted mineral grains, The single criterion for separation into
rock types will be on the basis of mineral content,

Materials: 10 petrographic slide mounts of grains,

These 10 slides will contain an isotropic*, I, mineral, an
anisotropic**A, mineral, and an opague, O, mineral in varying
proportions.

Instrument: Petrographic microscope. (Polarizing)
Problems: Determine how many different rock samples you would col-

lect from the samples (slides) given. The number is obviously
between 1 and 10 with no "absolute" answer.

These "answers" are based on the initial weighing out of
components

Slide No, Collect Sample | DoNot Collect: Similar to Slide No. ___

(1/21, 1/2 A)

(1/31, 1/3 A, 1/30)
(all A)

(9/10 A, 1/10 opague)
(1/31, 1/3A, 1/3 0)
(1/21, 1/2 0)

(9/10 A, 1/10 opague)
(1/21, 1/2 A)

(1/21, 1/2 A)

(all A)

-
O © W -3 O U B W N e

b Mo M
Ca T T I »

3t

An isotropic mineral I transmits light with equal velocity in all
directions thereby remaining dark and colorless under crossed
nicols in a petrographic microscope,

*% An anisotropic A mineral breaks light into more than one wave
and transmits each with a different velocity resulting in inter-
ference colors under crossed nicols in a petrographic microscope.

Figure 67, Score Sheet for Petrographic Slide
Analysis
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Figure 68,

K Hs D Hy Pd Mf Pa Pt Sc MaSi Lb Es

Normalized MMPI Profile - Operator 1,
Pre-Simulation
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?LFK l 23 456 78 9101112

//'\\ A /\ /

?LFK Hs D Hy Pd Mf Pa Pt Sc MaSi Lb Es

Figure 69, Normalized MMPI Profile - Operator 1,
Post-Simulation
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?7LFK 1 2 34 5 6 7 8 91011 12
/
\ /
/

?LFK Hs D Hy Pd Mf Pa Pt Sc MaSi Lb Es

Figure 70, Normalized MMPI Profile - Operator 2,

Pre-Simulation
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?LFK 1 2 345 6 7 8 9101112

\/\\l/

?L FK Hs D Hy Pd Mf Pa Pt Sc MaSi Lb Es

Figure 71, Normalized MMPI Profile - Operator 2,
Post-Simulation
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Figure 72, Operator 2 Heart and Respiratory Rates - Emergency Rescue
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Figure 74, Partial Extension of the Upper Bunk, Permitting Aisle Access

with Greatly Increased Workspace Area

12504- ITR2




- 173 -

Figure 75. Use of Upper Bunk During Temporary Disablement of
One Crew Member (subject on upper bunk has access
to all tasks)
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Figure 76. Meal Consumption Times versus Days in Simulator
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Figure 77, Water Exchanges - Operator 1
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Figure 78. Water Exchanges - Operator 2
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Figure 79. Measured Water Output - Operator 1
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Figure 80. Measured Water Output - Operator 2
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Figure 81, Total Water Intake Minus Urine and Fecal Water - Operator 1
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Time of Day

0600
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1355
1450
1520
1615
1700
1800

1830

1830
2000
2040

2130
2135
2150

2200

Sequence A
Take down beds
Electrode checkout
Personal hygiene
Eat and cleanup
Scientific tasks
Audio balancing
Suit checkout
Suit don
Qutside tasks
Suit off
Drive
Chart (if required)
Eat and hygiene
Scientific task
Audio balancing
Sample measurement
(G P1 set)
Geophysical tasks

Suit don

Inside tasks (eg G P I set)

Doff suit
Eat and hygiene
Monitor
Navigate
Scientific tasks
Sample measurement
Audio balancing
Geophysical tasks
Buffer time period
Eat and hygiene
Scientific tasks
Sample measurement
Geophysical tasks
Remove electrodes
Hygiene
Set up beds

Retire

Sequence B

Take down beds

Electrode checkout

Personal hygiene

Eat and cleanup

Scientific tasks

Sui
Ins
Sui

Mo

Sample measurement
Audio balancing

t don

ide tasks

t off

nitor

Navigate

Eat and hygiene

Sci

Sui

entific task
Geophysical tasks

(or suit checkout)
Audio balancing
Sample measurements

t don

Outside task

Doff suit

Eat and Hygiene

Drive

Chart (if required)

Sci

entific tasks
Audio balancing
Geophysical tasks

Geophysical tasks

Buffer time period

Eat and hygiene

Sci

entific tasks
Geophysical tasks

Sample measurement

Remove electrodes

Hygiene

Set up beds

Retire

Approximate
Task Time
(hr:min)

: 20
: 25
:15
145
:30

: 55
:30

: 565

:30

145

: 55
:30
:55

<45

: 30

:30
140

:50

:05
115
110

Figure 106.
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Approximate
_Time_ Task Sequence Task Time (hr:min)
0600 1 Take down beds 120
0620 2 Electrode checkout 115
0635 3 Eat (Meal 1) and cleanup <45
0720 4 Hygiene :20
0740 5 Drive/ Monitor 1: 00
0840 6 Chart (if required)/Navigate :20
0900 ki Don suit and airlock pump down :30
0930 8 Outside task and airlock pump up/inside tasks :35
1005 9 Crew exchange and airlock pump down 120
1025 10 Inside tasks/Outside tasks, airlock pump up :35
1100 11 Doff, suit drying, cleanup +145
1145 12 Eat {Meal 2) and cleanup 145
1230 13 Rest period 1: 00
1330 14 Sample measurements <20
1350 15 Audio balancing :20
1410 16 GP1/Suit checkout 120
1430 17 Suit checkout/GPI 120
1450 18 Monitor/Drive 1: 00
1550 19 Navigate/Chart (if required) 20
1610 20 Eat (Meal 3) and cleanup 145
1655 21 ‘ Audio balancing : 20
1715 22 Sample measurements <20
1735 23 Geophysical tasks 1: 00
1835 24 Buffer period :30
1905 25 Maintenance, repair and housekeeping 1: 00
2005 26 Eat (Meal 4) and cleanup 145
2050 27 Report writing, hygiene and personal activity 1: 00
2150 28 Remove electrodes and set up beds 110
2200 29 Retire
Figure 107, Final LUNEXII Task Time Line —
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APPENDIX I

MISCELLANEOUS TASK DATA SUPPLEMENTAL TO
TEXT DESCRIPTIONS
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APPENDIX II
RESULTS OF MID-SIMULATION MEDICAL EXAMINATION

Both subjects were given physical examinations after 10 days in the simulator.
The examinations were administered by Dr. Milton Alter of the Department
of Neurology, University of Minnesota. His report follows:

| MICHAEL J. VACCARO (OPERATOR 1)

The subject is a 38-year-old male. He has no specific complaints regarding
his physical condition. He pointed out that he tended to bump his head fre-

‘ quently on the low ceiling after a day or so of being in the chamber. He com-

[ plained about the visual task, reporting that it made his eyes tear and that he
awoke in the morning with matter in the eyes. The irritation of the eyes has
decreased in the last day or so. He no longer wears his contact lenses; pointed

out that he is nearsighted and does not need them in the chamber.

Past History

Includes allergies for which he takes antihistamines in the summertime. The
allergies are characterized by irritation of the eyes and sneezing (he has
sneezed occasionally in the chamber). For the first few days he complained
of sore throat, a residual of an upper respiratory infection which he had for

! about two weeks before the simulation was started. He had an appendectomy
in 1950.

[ "RZCEDING PAGE BLANK. NOT FILMED,
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Review of Systems

Subject denies headaches; he is sleeping well and feels rested. He has had

no double vision nor do his eyes tire unduly except while performing the visual
driving task. His hearing is good, sense of smell is normal. He perceives
odor of special diet and bowel movements. He no longer has throat discom-
fort on awakening, although his nose tends to be a bit stuffy. There is no
shortness of breath, chest pain or coughing. He experienced no palpitation

or skipped beats. His abdomen does not feel bloated, and his bowel move-
ments have been regular, about once a day. He is "always hungry'' and looks
forward to each meal. Urination has been normal. He has entered a "contest"
with Operator 2 to see who can put out more urine at one time. He has expe-
rienced an occasional erection, which is not unusual for him. He denies any

stiffness of the joints and has no muscle tenderness.

On physical examination blood pressure was 112/78 right arm, sitting; 114/74
left arm, sitting. The pulse was 68 and regular. He appeared alert and
answered questions with obvious interest and sincerity. He appeared to be
trying to do his best. There were no bruises about the head, or the limbs,
or on the trunk. The condition of the skin was good and there was no dis-
pleasing odor. There was some conjunctival infection, about equal in both
eyes; there were several dilated vessels over the sclera. Olfaction was
normal; funduscopy showed no abnormality of the retina. Extra ocular move-
ments were full. The pupils measured about 3 mm and were equal. They
reacted to light directly and consensually. They also reacted on accommo-
dation. The subject read the smallest type on the standard card. Facial
sensation was normal. The jaw strength was normal. The face moved sym-
metrically. Taste was normal; hearing was intact. The palate elevated in

the midline. The neck muscles were strong. The tongue protruded centrally.

Motor power was excellent and muscle tone was normal.
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Deep tendon reflexes were 1+ bilaterally and no abnormal reflexes were
elicited. Response to pin prick and touch were normal. Vibratory threshold
was normal for the age. Position sense was intact. He identified fingers
correctly when placed in the palm but consistently misnamed a dime as a
penny on the left hand. Identical objects were perceived as being heavier in
the left hand.

Coordination was normal on finger to nose and heel to shin test. Rapid
alternating movements were normal. Standing with feet together and eyes
closed produced no swaying. Ears, nose, throat, chest, heart and abdomen

were normal.

Impression

This subject is in good physical condition and appears psychologically capable
of continuing the experiment. He is, in fact, well motivated to do so. The
only abnormality of note was the conjunctival infection which may be related

to exposure to ultraviolet light. The subject has a history of allergies which
also manifests by eye stimulus. The possibility of ultraviolet exposure should
be investigated and if present, eliminated.

HAYDON GRUBBS (OPERATOR 2)

The subject is 34 years old, male. He has no specific physical complaints.
He was troubled by the small size of the sleeping arrangement until he found

a position which allowed him to stretch his legs. There was some stiffness

of the neck initially, brought on by the need to keep the head flexed almost
continually in the small chamber. He described dissatisfaction with the visual
driving task, noting specifically that it was difficult to follow the broken ver-
tical line. He suggested that a solid vertical line would ease the task consid-
erably. There was also some eye discomfort when performing the visual

driving task.
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Past History

Left mastoidectomy as a child; fractured right clavicle in the teens.

Review of Systems

He denies headaches; his vision is good, there has been no matter in the eyes.
His hearing, smell and taste are normal. He had less difficulty than Operator 1
in determining between scotch and bourbon. There is no swallowing difficulty
or soreness of the tongue. He has no chest pain, shortness of breath, no
palpitation or skipped heartbeat. He feels his response to activity on the
treadmill is better now than before the experiment was started. He is always
hungry. One day there was excessive belching and flatus, probably on the

7th day. The onion in the diet may have been responsible, but he enjoyed the
onion. Urination has been normal in frequency and amount. He has had no

erections. He denies joint and muscle discomfort.

He takes no medication routinely.

On physical examination the blood pressure was 106/68, right arm and 94/74
left arm. The pulse was regular at 64. He was well motivated, alert and
responded quickly and appropriately to questions. He appeared rather tired
and had puffiness below the eyes. The eyes were only slightly infected, much
less so than in Operator 1. The ear canals were plugged with wax; the throat
had no redness; there was no adenopathy in the neck. The chest was clear,
the heart was regular, the abdomen was soft. Neurological examination
showed intact olfaction, the extra ocular movements were full but there was
some nystagmus in the horizontal plane on lateral gaze. Pupils were 3 mm
bilaterally and reacted well to light directly and consensually. They also
reacted on accommodation. Visual fields were full by confrontation and
funduscopy was normal. Facial sensation was normal, jaw strength was

good, face moved symmetrically. Taste was intact for salt and sugar although
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the subject had difficulty recognizing the taste stimulus on the left side for
the first two trials. Hearing is intact. The palate elevated in the midline,

the neck muscles were strong, the tongue protruded centrally.

Motor power was excellent, tone was normal. Tendon reflexes were brisk

but no pathological reflexes were elicited.

Coordination was intact on finger to nose and heel to shin test; rapid alter-
nating movements were well performed. The subject stood well with feet

together and eyes closed even when feet were in tandem position.

Touch, position, pin prick and vibration were intact. Sterilognosis was

normal,

Temperature was well perceived. The subject identified coins placed in the

hands and had no difficulty in weight discrimination.

There was a small, triangular bruise above the right knee. Chest, heart,
abdomen were normal. Ears had usual amount of wax. Nose and throat

were normal,

Impression

The subject is in good physical and psychological condition and appears to be

capable of continuing the experiment.
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APPENDIX III

COMPUTER TREATMENT OF
PRINCIPAL TASK DATA
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APPENDIX III

COMPUTER TREATMENT OF
PRINCIPAL TASK DATA

Five programs were written to generate means, standard deviations, IX,
£X", N for any number of experimental conditions, if coded numerically
(cond 1, 2,....n), for the following situations:

1. For a particular period of time (e. g., a day), for N trials

(unspecified)

e For any subject

e For pooled data from two subjects only

2. For any subject over an unspecified number of subperiods

of time

3. For two subjects' data pooled over subperiods of time

(unspecified)

The differences in the five programs result mainly from the number and kinds
of measurements obtained from the experimental situation, e.g., raw scores
as opposed to differences between raw scores, the kinds of calculations to be

suppressed for reason of insufficient data points, and the variable control

gained from sorting on different columns for different kinds of tasks.

The programs could be combined into a very general one, dimensions could
be extended, and instructions added to handle pooled data for any number of

subjects, the size being limited by available memory.

PRECEDING PAGE BLANK NOT FILMED.
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The five programs and their purposes are as follows:

UASTX1 (Drive Task) - Computes ZX, ZX2, N, Mean, Standard

deviation for task time, four physiological measures, fle ldt,

and time off course for two or more driving speeds for a par-
ticular time period (a day) for N individual subjects and for two
pooled subjects. These calculations may be arrived at as a sub-
group under any number of experimental conditions (1, 2,....n)
if so coded. The standard deviation for task time was sup-

pressed since the time interval was constant.

UASTX2 (Monitor Task) - Computes the same elements as

UASTX1 for task time and physiological measures, but for the
differences between two measurements (time off course and
monitored time off course). Standard deviation of task time

was again suppressed for the constant task time interval.

UASTX4 (Navigation Task) - Computes the five items mentioned

above for the differences between angles GEl, OSI, and angles
9E2, 982; for the four physiological measures; and the task
time for n periods for a particular day for N individual subjects
and for two pooled subjects for each period; and over all periods
for the day. The standard deviation for task time is suppressed

since the number of data points was so few.

UASTXS5 (Audio Frequency Balancing Task) - Computes the

same five elements, four physiological factors, and differences
between two measured frequencies for a particular period of
unit time (a day) for N individual subjects and for two subjects
(data pooled); also, for each subject and two pooled subjects

over all periods of time.

12504-ITR2




o - 235 -

o UASTX6 (Sample Measurement) - Same as above except for

formats and the suppression of standard deviation of task time.
Time was recorded only once every six trials resulting in too

few data points.

CODING INFORMATION

DSSX = Sum X

DSSQ = Sum of squares (X2)

TRL = Number of trials (1 per card)

, 1st total level

AVP = Mean = DSSX/TRL

| SDP = Stand deviation = SQRT (TRL*DSSQ-DSSX*%2)/(TRL*TRL-1. 0)
2nd total level

TTRL = TRIALS

il

| TX = Sum X
| TXQ = Sum X2
; AVS = Mean
SDS = Standard Deviation

1 and 2 = subject identification

AVT and SDT - special calculations for task time when time was not
recorded for each trial

Grand Total

TPX = Sum X
TPQ = Sum X
TAV = Mean

TSD = Standard Deviation

2
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Integer Controls

NP1 = number of periods or driving speed control for Subject 1

NP2 = number of periods or driving speed control for Subject 2

IP = sequential period identification

M = indicates level of totals to be taken

NEP = highest number of periods reached - controls totaling
over periods total one day.

Arrays

(For UASTX1, UASTX2, UASTX4, All arrays showing a size 6 or X, 6
substitute 8.)

IFORM (10) identification data

TIMO(2) Time in minutes and seconds

RHR(4) physiological data - integer form

DSC(5) non-physiological data - integer form

DSC(5) non-physiological data - decimal form (actual dimensions
vary from (2) to (5) depending on the program)

IFMT(10) Temporary storage of identification data
DSSX (6) first-level storage X

DSSQ (6) second-level storage '2X2

STRX1(4, 6) second-level storage TX Subject 1
STRX2(4, 6) second-level storage X Subject 2
STRQ1(4, 6) second-level storage £X2 Subject 1
STRQ2(4, 6) second-level storage £x2 Subject 2
STRL1(4) second-level storage Trials Subject 1
STRL2(4) second-level storage Trials Subject 2
TRL = number of trials first level

AVP1(4, 6) Mean computation first level

SDP1(4, 6) Standard deviation computation first level
TX1(6) Total £X for Subject 1 over all periods
TX2(6) Total Z‘.X2 for Subject 2 over all periods
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TQ1(6) Total £X for Subject 1 over all periods

TQ2(6) Total EX2 for Subject 2 over all periods

TPX12(6) Total X for Subject 1 and Subject 2 over all periods

TPQR1, 2TPQ12(6) Total )Z‘.X2 for Subject 1 and Subject 2 over all periods
AVS1(6) Mean storage after calculation over all periods for Subject 1
AVS2(6) Mean storage after calculation over all periods for Subject 2

SDS1(6) Standard Deviation Storage after calculation over all periods
for Subject 1

SDS2(6) Standard Deviation Storage after calculation over all periods
for Subject 2

AVP12(6) Mean storage for Subject 1 and Subject 2 over all periods

| SD12(6) Standard Deviation Storage for Subject 1 and Subject 2
) over all periods

| SX(12) Grand total £X and £X
TAV(6) Grand mean
TSD(6) Grand Standard Deviation

' OPERATING INSTRUCTIONS

}
} STOP - Normal STOP

Pause Mount - Work Tapes Units 16, 21, 22 (Logical Tapes 1, 2, 3)
Logical Tape 3 stores £X and ZXZ for each day.

16K 100 cards per minute

INPUT

Punched cards must be sorted in the following fashion

Task 1,2 ; Task 4 5 6
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Col 19 Speed Col 17 period

Final Data card required for each program Col (1 and 2) 99

Units for input parameters are limited only by format statements

OUTPUT

Printed data varies according to format from program to program.

All time outputs are in seconds correct to 1/100th.

The following pages show the raw data format used and sample computer pro-
gram listings.
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1

@ © ¥ AUTOMATH 1800 SOUKFE PROGRAM LISTINGE ® & 0aNan

EFN PRNGRAMS  UASTXI] JORS MACEX

DIMENSION IFORM(IO)oTIMO(?)vRHR(ﬁ)-D'LlB).YFMT(IG)ooTRYI(O 8
15TRX2(448) 4 DSSX(B) ¢NSSA(B) ¢ STRLLI (4) 2 STOL2(4) 4AVPL (A4P) 4SNP (418),
25TRQ) (44R) ¢ STRA2(498) ¢y TXL(R) 4TX2(8) 9 TANLI(B) 9 TXQ2(8) 9AVS1(8)

 3AVS2(8) 45DS1(8) 9SDS2(8) 2 TPX12(R) 4 TPRI2(B) 4 TAVIB) 4TSN(BY s
4AVPI2 (4, a).snpla(a a).Avrlz(a).snrvz(A).sxtlea

AP=NP] _ ,

AP2ENP2

162=?

161=)

REWIND 1

PAUSFE MOUNT

RFWIND 2

RFWIND 3 '

100 FORMAT (12+11013012¢10001301833120F2.00F802¢2(F3404F2e0)¢Fa,14F1a0,
13Fa,2)

101 FORMAT (1H1¢/72X,4HCON ¢1X93HDAY 42X, 3HTSR)

102 FNRMAT(3Xe1143X41248%,12)

103 FORMAT(13Xe5HMEANS 45X 19HSTANDARD DEVIATIONS)

104 FORMAT (1Xo3HSUB,2X92HSPs2X o 1HNy2X 4 YOHTTIME SFC 9HDFLTA 11HDELTA

1 SHHR] SHRRI S5HHRM SHRRM L10RYIME SEC +9HDELTA .
211HNELTA +SHHRT +5HRRI  +5HHRM 45HRRM )

105 FORMAT(1Xs1342Xs11, F400uF9'392F109101X'4F5|00F9-2|2F10|1ozxc
14F5,0)

106 FNRMAT (1Xs 6H SUM X) R
107 FOPMAT(1x, 9H SUM Xe#2) R V ,
108 FORMAT(TYX+10HTIME . 92 (14HDELTA n ) e11HHRI .
111HRR] 9 11HHRM v 11HRPM 'SHDAY 46HTASK )
109 FORMAT(TF12.2 9215
110 FORMAT (1H1)
111 FORMAT(//)
RFAD(5,100) TFORMy TIMOJRHRyNSC
25 WRITE(9,4101) I
wQITF(9-!02)(IFORM(S)'IFORM(4)9IFObM¢1))
WRITE(9,4103)
WRITE(94104) ‘ .
1P2=1 ' ‘
50 DO 55 [=1410
IFMY (1) =tFORM(I])
55 CONTINIE :
DSSX(1)=nSSX (1) «TIMO (1) ®60, 0+TIMA(9)
NSSYX(?2)=nSSsY (2)+DSC ()
DSSX(3)=NS5X(3)+DSC(2)#60.04NSC(3)
DSSX(4)=NSSX (4) «RHR (1Y
NSSX(5)=NSSX (5) «RHR(2)
DSSX(6)=nS5X (6) +RHR (3)
NSSX(T)=nSSX(T)+RHR(4)
DSSQ(1)=DNSSQA(1)+(TIMO()) #60, o+TIMoc2);u»? . _
NSSA(2)=nSSA(2) +DSC (1) #e2 v
NSSQA(3)=DSSQ(3)+(DSC(2)upn, 0+DQC(3))*°7
DSSQ(4)=NSSQ(4) +RHR (1) @%2

12504~ ITR2

{



. - 245 -

& o & AUTOMATH 1800 <SOURCE PROGRAM LISTING® # & 0nn40814
EFN PRAGRAMI LASTX? JOR? MACEK 00715

T“ENQION XFORH(10)1T1M0(°)vQHD(ﬂ).D‘C(‘)-IFMT(IO).STRX1(4o8)o
ISTPXZ(doB)sDSSX(B)qFSSQ(B).STRL1(4)1qul2(4).AVPI(498)oSﬂP1(498).
2STRQL(448) ¢ STRR2(49B) 9 TX1(8) 9 TX2(B8) e TXN1(8) e TXQ2(8) 2AVSE1(8)
3AV§2(B)oSD<l(8)vSDS?(H)oTPXIZ(R)-TPQlZ(B)vTAV(B)oTSU(B)v_
4AVP12 (4, B),SnPIZ(A.P)oAVTIZ(A)sSDT12(4$.<x(16)

AP=NP)
A®2=NpP2
162=2
161=1
REWIND 1
PAUSE MOUNT
REWIND 2
REWIND 3
100 FORMAT (1201191341243 11413,71493114F2.04F4, 202 (F3,04F200)¢3(F1,0y
1 FA.2))
101 FORMAT(1H1,//72X,4HCON le.3HnAYo?Xo3HT§¥)
102 FORMAT(3X+1)43X01248%,12)
103 FORMAT(13X+S4MEANSy45X9e19HSTANNARD NDFVIATIONS)
104 FORMAT (2X 4 3HSUB42Xe2HSP 92X 4lHNy2X 12HTIME SEC QHDFLTA

] 1 SHHRT1 SHRRI S5HHRM S5HRFM L1NHTIME SFC (9HDELTA R
2 SHHRT  +SHPRI 3y SHHPM ,5HRRM )
105 FORMAT(1Xe1302Xs11, F5¢0¢F%e2s F100191Xe4F5.09F9¢2y Fl0e102X,
14F5,0)
7 106 FORMAT(1X. &H SUM X)
|| 107 FORMAT(1X, oM SUM Xew2) | |
’ 108 FORMAT(7X+10HTIME « (14HDELTA D . ) +11HHRI .
. 111HRRI ¢+ 1 1HHRM +11HRRM '+ SHDAY +6HTASK )

109 FORMAT(6F17.2 +215)
110 FORMAT(1H1)
111 FORMAT(/7)
READ(S,100) IFORMy TIMD,RHR4NSC
C WRITE(94100) IFORMsTIMOWRHR,DSC
25 WRITE(9,101)
WRITF (9, 10?)(IFORM(S)oIFOQMta)vIFOQM(l))
WRITE(9,103)
WRITF(9,108)
1p=]
1P2=]
50 DO 55 I1=1,10
IFMT(IY=T1FNRM(])
55 CONTINUE
DSSX(1)=NSSX (1) +TIMO{1)#60, U+|IMO(”)
] DSSx{2)=0s5X {2} +ARS{{DSC(1)%80,0+D08C (2} ) =(NSC(3)040:0+N5C(4)))
NSSX(3)= DSSY(3)+RHP (1) S .
NSSXx(4)= D§SX(4)+RHR(2)
NSSx(S)= DSSYX(5)+RHR (3}
DSSx(6)= DSSX(6)+RHR (4)
NSSQAC1)=NSSA (1)« (TIMO(L) w60 0+TIMO(2) ) 0es2
- DSSQ(2)=nss0(2)+((DSC(Y) A0, 0+DSC(?))-(DSC(3)660 0¢DsC(a)))na2
NSSA(3)=NgSN(3)+«RHR (1) #e2 : ‘
NSSQ(4)=NSS0O(4) «+RHR(2) a2
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o o o AUTOMATH 1800 SOURCE PROGRAM LISTING® »

» 000408

EFN PROGRAMI  UASTXA © JOAT EJDALLESKA 00714

NIMENSTON TFORM(10) 4 TIMO(2) oRHR (), UQC(5).TFMT(IO);%TRXI(Q;B)v

15TRX2 (4, H);H%SX(B)s“SSQ(B)oSTRLl(“)'QTDL’(Q)oAVPI(QQB)QSHP1(498)9

25TRAL(448) ¢STRAZ(498) o TXLIA) ¢ TX2(B) o TXN1(B)+TXQ2(8) 9AVS1(8)
3AV92(R>oSD§l(8).5052(6)'TPXI?(8).TPQIZ(G).TAV(8)~T%D(8)¢;
4AVP12(4,8),50P12(4, GJ.AVTlPta)oSHTlatui.Qxfls) ‘
AP=z=NP) ,

AP2uNp2

162=2

16l1=l

REWIND 1

PAUSE MOUNT . '

REWIND 2 . - '

REWINND 3

100 FORMAT(I2,11013412,11,13,37443114F2,04F042,2(F3, 0.??.0).2(2‘4 1,4Y%)

1,3F4.1)
101 FORMAT(1H1,4//72Xe4HCON o 1X93HNAYs2X e IRTSK)
102 FORMAT(3X,1143X91244X,12)
103 FOHMAT(13Xg5HMhAN5145XQ‘9HSTANUAPD DFEVIATIONS)

104 FORMAT(1Y,2HS +12HTIME SEC yIHDFLTA sOHDELTA 49HDTLTA
1,8HHRT  454RRT  +5HHRM  45HRRM  412H TIME SEf 9HnEL7A K
29HNELTA +OHDELTA +sSHHRT +SHRRT™ y8HHRM .RHRRM y

105 FORMAT(I2y Fl04243F94141X94F540 11x “43F9.144F5,0)

106 FARMAT(1X, 64 SUM X)

107 FORMAT(1Xs 9H SUM X##2) , L

108 FNRMAT(TX,10MTIME T 9 3(1AHDELTYA D i T T ) G 1IHHRT e

111HRRT s 11HHRM vllHRRM ,,:..SHDAY W6HTASK )

109 FORMAT(8F12,2 +215) -

110 FORMAT(1H1)

111 FAPMAT(/ )

112 FAPMAT( 34 N=,14, 4HPRN=14) X
RFAD(5,100) IFORMyTIMO,RHR,4NSC
WRITE (94100) [FORMyTIMOYRAR,DSC

25 WRITC(94101) ' “‘”~~H
WPITF(OyIO?)(IFORW(s)'IFORM(a)1IF0RM(1))
WRITE(9,4103) \
WRITCZ(9,104) o o wm,;;” _
IP=1 o BRI .f‘a{.f ' i
Ip2=1 R A

50 D0 55 1=1410
IFMT () =IFARM(T) ,

55 CONTINUE ' o

NeSX (1)=NSSX(1)«TIMO()) #40, 0+TIMO(¢);;! -
us'x(?> NSSX (2) +ABS(NSC(1)=DSC(2))
SX(3)=Nn354 X(3)¢AB%(HSC(3)-DSC(43) S
nc'x(4y NSSX (4)+DSC(H) [EEANE R AN
NESX(5)=NSSX (5) +RHR (1) S T
NESX(6)=N5SX(6) +RHR(2) S

D8SX(7)=NSSY (7) +RHR (3) e
785K (R)=NSSX (8) +RHR () T RS
18SR (1)=N580 (1) +(TIND (1) #6040+ TIMQ (2)) 002
NSSA(2)=NS5A(2) + (ARS(NSC (1) =DSC (2))) ve?
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‘e e o AUTOMATH 1800 <OURCE PRNGRAM LTSTING® & o 04040814

\
| EFN PROGRAMSI  UASTXS o Jory MACEK 00573
nn 360 IP 1 NE ‘
P NRITE(99104)(IFHT(S)QIFMT(Q"IFMT(1>vIP vSTRLl(IP)v(AVPIZ(IPo
! 1J) 0 J=1,48) o (SDPL12(IPyJ) 0J=146)) .
’ WPIT‘(3)((‘TRXI(IPvJ)oJ=1v6)9CQTQQI(IPoJ) Ja)1ab6) s IFMT(A) o IFMT (1))
b N=Ng4) R
360 CONTINUE R o £ S S \
£ GRAND TOTAL FNR DAY | |
... D0 368 Jg=146 , L O v .
TPX12(J)=TX1(J)+TX2(S) LA
TPRI2( =TXOL (D «TXQ2EI) e ‘
365 CONTINUE . -
CTTRL1I2=TTRLI+TTRL2 . , ,
TP12=NPl4NP?2
0 37% J=1,46 )
TAV(J) = TPXIZ(J)/TTRLIZ
) ) TSD(J)=SQRT((TTRLIZ“TPQIZ(J) TPXlZ(J)*“Z)/(TTRL12°(TTR|1? 1.0)))
375 CONTINUE
WRITE(9v105)(IFMT(S)'xFMT(Q)QIFMT(Y)vTTRLlZ-(TAV(J)OJ=1 6)y
1(TSDUJ) yu=146))
WRITE(3)((T°XI2(J)0J=1v6)9(TPQIZ(J)tJ 1e8)9IFMT () s IFMTI(Y))
. N=N+1}
CLEAR ALL ARRAYS
IP=0
DD 355 IP=1.NEP
STRLIC(IPY=Nn,N
STRL2(1P)=0.0
no 355 J=1,8 .
STRxI (1P Y=0,0
STRQR1(1P4LJY=0,0
STRX2(IP4J)=040
STRQ2(IP4J)=0,0
355 CONTINUE
DO 390 J=1,.6 . oo U
TX1(J)=0,0 e - , RS B R
TXA1())=0.0
TX2(Jy=0.0
TY¥R2(J)=n.0
390 CONTINUE
TTRLI=0.0
TTRL220.0
TRL2=0,0
TRL1=0,0
6n T0(50050940590059405)9N
C CHG DAY
400 M=3
. G0 TO 201
405 WRITE(9,110)
WRITE(9,106)
WRITE(9,107)
EMDFILE 3
REWIND 3

B e e e e e PTa

T T T T apmm—
: ra’
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APPENDIX IV

MINNESOTA MULTIPHASIC PERSONALITY
INVENTORY EVALUATIONS
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APPENDIX IV

MINNESOTA MULTIPHASIC PERSONALITY
INVENTORY EVALUATIONS

The Minnesota Multiphasic Personality Inventories administered to the
subjects on their first and eighteenth day in the simulator was analyzed
by Mr. Floyd Akers, phychologist of the American Rehibilitation Foun-
dation, Minneapolis. Because of the personal nature of this test, this
appendix is published as a separate document and is available for limited

distribution through the office of Dr. Stanley Deutsch, OART, Washington,
D.C,
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ERRATA

for

Honeywell Interim Technical Report 12504-ITR2, Man System
Criteria for Extraterrestrial Roving Vehicles - Phase IB -
The LUNEX II Simulation (MFSC Contract NAS8-20006), 15 June 1966

Page 89 - Table 21: Footnote c) should read "...from Figures
92 and 94" (instead of Figures 80 and 82); Footnote d)
should read "...from Figures 96 and 97" (instead of
Figures 84 and 85).

Pages 120-193 ~ Figures 92 through 95: Ordinate scale callouts should
read "Oxygen Consumption Rate (I./Min) and Heart

Rate (Beats/Min x 100)".

Page 195 - Figure 97: Abscissa scale is displaced one unit;
it should begin at 40 and end dt 200 (as in Figure 96).
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